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Abstract
In many prediction tasks, selecting relevant fea-
tures is essential for achieving good generaliza-
tion performance. Most feature selection algo-
rithms consider all features to be a priori equally
likely to be relevant. In this paper, we use trans-
fer learning — learning on an ensemble of related
tasks — to construct an informative prior on fea-
ture relevance. We assume that features them-
selves have meta-features that are predictive of
their relevance to the prediction task, and model
their relevance as a function of the meta-features
using hyperparameters (calletkta-priory. We
present a convex optimization algorithm for si-
multaneously learning the meta-priors and fea-
ture weights from an ensemble of related predic-
tion tasks which share a similar relevance struc-
ture. Our approach transfers the “meta-priors”
among different tasks, which makes it possi-
ble to deal with settings where tasks have non-
overlapping features or the relevance of the fea-
tures vary over the tasks. We show that learning
feature relevance improves performance on two
real data sets which illustrate such settings: (1)
predicting ratings in a collaborative filtering task,
and (2) distinguishing arguments of a verb in a
sentence.

proposed (see Kaelbling (2003) for a recent overview).
Most feature selection algorithms treat all candidate fea-
tures as equally likelya priori, to be relevant, and use the
data alone to select among them. In many cases, however,
we may have reason to believe that some features may in-
nately be more or less likely to be relevant. For example,
consider a collaborative filtering task, where we predict a
user’s preference for one prodycbased on his observed
preferences for others. Here, the preferences for certain
products — e.g., those similar or relatedite— are more
likely to be relevant top than others. In another exam-
ple, consider inferring protein function from a set of mstif
(short segments) in its sequence. Here, conserved motifs,
or those on the surface of the protein, are more likely to be
relevant.

In these examples, and in many others, a featucan
be characterized by a setwieta-features , that describe
both the properties of the feature and its potential retatio
ship to the prediction problem. In the collaborative filter-
ing example, a product serving as a feature may be charac-
terized by meta-features such as its price range or its sim-
ilarity (along different dimensions) to the target product
In the protein prediction example, a motif may be charac-
terized by meta-features such as its conservation score or
the composition of hydrophilic amino acids. We may wish
to utilize these meta-features to construct a more informed
prior over feature relevance. In most cases, however, we
do not have enough prior knowledge to determine exactly
how much effect, or even in which direction, each of these

1. Introduction meta-features has on feature relevance. Thus, a key prob-
In many prediction tasks, we are faced with a huge numiem is to learn the hyperparameters (a meta-level priot) tha
ber of features. The use of effective feature selection alcharacterize our prior on the relevance of a feature in terms
gorithms or regularization method is critical for achieyin of its meta-features. While cross-validation is often used
good performance. Much effort has been devoted to theo estimate meta-parameters such as these, the number of
topic of feature selection, and many approaches have beeneta-features in many applications can be quite large, ren-
dering a standard cross-validation regime intractable.
In this paper, we describeteansfer-learningapproach
for estimating these hyperparameters. In the transfeniear
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ing paradigm, first proposed by Baxter (1997); Caruana We aim to learn the parameters of a probabilistic model
(1997); Thrun (1996), one aims to achieve better generalthat defines”(y, | =,.). Our framework applies to the class
ization by considering multiple related learning tasksj an of generalized linear models, where this conditional distr
transferring information among them. Here, we use an enbution is defined in terms of(w, «,.), for some vector
semble of prediction tasks where similar types of featureof task+ parameteraw, = (w,1,...,w,x,) € RX" and
tend to be relevant. Although information about the actualsome pre-selected gating functign For example, we can
values of parameters is commonly transferred in this seteonsider the case where thgs are discrete binary-valued
ting, the problem of learning informed models of feature variables ang is the logit function:
relevance has been largely unexplored; see Sec. 6 for a dis- 1
cussion of prior work. Plyr =1 arwy) = 5 toxp(—w z,)’ @)

Our approach applies to the class of generalized lin- "
ear models (McCullagh & Nelder, 1989), where the pre-where, for simplicity of notation, we ignore the bias (inter
dicted target is a function of a weighted linear combina-cept) term, under the assumption that one of the features is
tion of the features. In general, all features are assumedlways set td. Alternatively,y, could be continuous with
to have zero mean Gaussian prior with the same variance Gaussian distribution whose meanuis .. We can also
In our case, however, we take the prior variance to be a&onsider the case whegg is continuous and its distribu-
weighted linear combination of the feature’s meta-feature tion is a linear Gaussian whose meamis z..
where the weights are the model hyperparameters (called As is typically done, we associate each feature weight
meta-priors). The objective function of our formulation is w,; with a a Gaussian prior with mean zero and variance
jointly convex in the feature weights in each task and the: Pw | v) = ﬁ eXp(_%), In most applications,
meta-priors shared across the tasks. Our model transfetg| narameters in a model are taken to have the same prior,
the meta-priors across different tasks and generatlizes thacogding a similar bias towards In our setting, we allow
relevance of the features in each task, which makes it posy gitferent~,, for each weights,;. In order to achieve
sible to handle the cases where tasks have non-overlappingfective generalization performance, we modg} as a
features and the relevance of the features vary over th@ejghted linear combination of meta-features of the fea-
tasks. Moreover, we show that two well-known feature se+re ;... More precisely, we assume that each feate
lection methods, i.e.L;-regularization (Tibshirani, 1996) s associated with a meta-feature vecfoy, € RY, which
and group Lasso (Yuan & Lin, 2006), are special cases Ogncodes certain characteristics of the feature that may be
our general approach. predictive of its relevance to the prediction task. The meta

We apply our method to two real world data sets. Thefeatures may depend either on the feature alone, or on the
firstis a collaborative filtering task, where we predict userfeatureand on the prediction task.
ratings for movies in (a subset of) the Netflix data. The  Gjyen a meta-feature vectof,,, we take the prior
second is the natural language tasksefmantic role label-  p(y, ) to be a Gaussian distribution with variange, =

ing (Gildea & Jurafsky, 2002), where we aim to identify g £, (constrained to be positive), whegis the set of
which words in the sentence correspond to which semany,qdel hyperparameters

tic argument of a verb (e.g., for the verb “throw” who is 9
the thrower and what was thrown). We show that, by ty-  P(w,x | B, f,..) = exp(— If”ﬂ ). (2)
ing together the feature selection decisions in our ensembl A /27T5Tfrk B [k

of tasks, we obtain better generalization to unseen teat dat
in all of them. Even more interestingly, we show that our We also define a prior distribution over the variange
method also allows us to transfer prior knowledge on fea{= ﬁva-k-) to be the gamma distribution:
ture relevance, in the form ¢, to new prediction tasks, al-
lowing us to achieve. s'ignificantly better performance with P(,1) o Vﬁf—U exp(—=Cypk) Yok = 0, (3)
small amounts of training data.
. ) whereC and D are hyperparameters of the gamma distri-
2. Transfer Learning Formulation bution; we discuss below the choice 6f D. This prior
Our problem formulation assumes the existence of ardlistribution over they,;'s serves to bias their values to-
ensemble ofR supervised learning tasks. Each task=  wards zero, which helps prevent the overfitting that can oc-
1,..., R is associated with sesponse variable,. and a  cur when the variance of the weight prior is too high.
set of K. features, denoted,,...,z,.k,. The features We note that the meta-features should be chosen so that
themselves may or may not be shared among the predictiothe feasible sef3 : Vr, k ﬁTfrk > 0} is nonempty. We
problems. We use,. to denote the feature vector associ- can guarantee this feasibility condition by restricting th
ated with problemr. meta-features to have non-negative values or by adding a
"bias” meta-feature with a large enough positive value.
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Now, consider a data sé{, Y consisting ofM train-  be solved using standard gradient methods (or factorizatio
ing instances for each of ouk tasks (where we assume, methods in the case of linear regression).
purely for simplicity of notation, that all tasks have the  To optimize3 given W "), we solve:

same number of instances). Thux, is a set of vectors R K w(t)2
x,[1],...,z,[M], forr = 1... R, where eache,[m] € argminy > | -4+ CB'f,, (6)
R%r: andY is a set of responseg|1], ..., y.[M]. Denot- BDim\B Fu
ing by W the vector of all of the parametets,, . .., wg, iectto 8T
overall we can define a joint conditional distribution: subjectto3 " f,. > 0.
R M This objective is convex i3, and can therefore be opti-
P(Y,w,8| X,F) =[] [[ Pwlml|a.[m],w.) mized efficiently using standard methods.
r=1m=1
R K. 4. Sparse Norm Equivalence
I Pwes 18, £ PGy, Let 7, be a set of identifierér, k) of the features (for
r=1k=1

the taskr and featurek) that are all associated with the
wherey,, = 8" f,.. Here, the first term is our generalized samer_zth meta-featuref angﬂ_n be the meta-prior corre-
linear model, and the two terms in the second product ar§Ponding tof,,. For simplicity of notation, we assume

defined in Eq. (2) and Eq. (3). that the shared meta-feature always takes on the value 1.
Then, the weight prior for the features from Eq. (4) is
3. Optimization Algorithm >0 X rryer, (FE+CB,). Applying the optimality con-

We choose to address our learning problem by findingdition for 3, we can show that the above weight prior term
the jointmaximum a posteriori (MAP3ssignment to all of  is equivalent to " /2C|F,|, /E(T’k)eﬂ wf’k. As are-

the parametera,, » = 1,..., R and the hyperparameters mjinder, the group Lasso penalty for a subset of weights

3, in the objective Eq. (4). To simplify the objective func- {w;}:er takes the formy™ m The effect of

D-1)
this type of regularization is to bias a group of weights to

tion, we fix D in Eq. (3), so thatyf,k in Eq. (3) cancels

outl/\/27v, in Eq. (2). With this assignment, we take .
/2T a. (2) g all go to zero. In the extreme case, when each feature is

modeled with a unique identity meta-feature, |, | = 1

the logarithm of Eq. (4), and obtain a joint log-likelihood

function: _
for all n, the prior reduces to a standakd-norm.
log P(Y,W, 3| X,F) (4) .
R M 5. Experimental Results
=> "> log P(y,[m] | &, [m], wy) We train our model over an ensemble Bfprediction
r=1m=1 tasks, jointly learning both the weights,...,wgr and
R K. w? the hyper-parameteys. We then evaluate the results rela-
- Z Z ( Trk + OﬁTfrk, + Con59 , tive to two different types of learning setups. In tGen-
=i \B Fr Test setup, we evaluate the generalization of the learned
weightsws, ..., wg t0 new instances from the training

whereConstdoes not depend on the optimization parame
ter. The other hyper-parametér, will be estimated using
cross-validation.

Critically, this objective function is jointly convex over
the optimization variable$V and3. Therefore, it can be

Ivi ing a ran f efficient convex optimization algo- . .
solved using a range of efficient convex optimization algo n each newvtest taskusing3 as a prior, and evaluate gen-

rithms, any of which is guaranteed to find the unique gIObaeralization performance on new test-task instances. This

optimum. We choose to use a coordinate ascent procedure ) ; .
setup evaluates whether information learned from previous
over the two sets of parameté¥® andg3.

For optimizingW given the currenB®  we solve: learning tasks can be used to allow learning of new tasks
pimizing¥v" giv urreng™, w Ve: using a lot less data.

tasks. This setup tests the ability of our approach to etiliz
the meta-level information on the features in order to gelec
more relevant, better generalizing features. In Thans-
Testsetup, we use thé learned on thes® tasks as a prior
for new, previously unseen tasks. We then learn dy

R M
arg H‘}‘l,nz > —log P(y.[m] | @.[m],w,) (5)  5.1. Collaborative Filtering

Tlem:; We applied our algorithm to the task of collaborative fil-
Sow?, tering for movie ratings. Specifically, we considered the
— ﬁTfrk problem of predicting ratings assigned to movies by view-

ers in the Netflix movie rating dataset.The full dataset con-
This equation has the same form as a generalized lineaists of nearly 100 million discrete ratings from 1 to 5 that
model with a weighted., regularization penalty, and can 480189 users assigned to 17770 movies. For our experi-
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ments, we selected the 5000 users with the highest numbére keywords about the movie (such as “cult movie”, “vi-
of ratings, as well as the 600 movies with the highest num-olence”, “organized crime” etc.). We discarded actors with
ber of ratings, and normalized the ratings for each moviefewer than 25 movies in the full Netflix dataset, directors
so that they have 0 mean and unit variance. with fewer than 5 movies, and keywords which appear in
As often done in collaborative filtering (Marlin, 2004), fewer than 80 movies. We defined a meta-feature vector
we view each movie as a separate prediction task, in whictf,,,,,, for each prediction movien and feature movien’
the instances are users, and the features are the ratings tiir, as shown in Table 1. Notice that these meta-features
the user has assigned to other movies that he has seeepresent properties of tteembinationof a feature and a
More precisely, in the prediction task for movie, user  prediction task movie, and thus illustrate the ability of ou
w’s ratings are mapped to a feature vectgy[u], in which ~ model to have a feature’s relevance can vary depending on
theith entry is either the (normalized) rating the user gavethe prediction task. Altogether, this set consists of acdbun
to theith movie, or0 if the user has not rated thith movie 1400 meta-features, from which selected the 200 most cor-
which is equivalent to mean imputation since movie ratingselated with he magnitude of the weights of a ridge regres-
have mean. The response variable is the ratipg[u] that ~ sion baseline model learned over a random subset of the
the user gave to movier. We performed feature selec- training data. In addition, for each task we also include a
tion for each prediction task by discarding feature moviesunique “bias” meta-feature whose value is always 1.
whose ratings have a Pearson correlation coefficient with In our Gen-Testexperiment, we used all 600 movies in
absolute value of less than 0.20 with the target movie’s ratour dataset as tasks, each with a training set of fixed size
ings. M (M ranging from 100 to 2000). We split the remain-
We use a linear regression modej;,, N(w, x,,,€?).  ing ratings for each movie into a validation set, consisting
For our baseline model, we add a Gaussian prior ovepf 10% of the ratings, and a test set. We trained the fea-
the weightsw,, with mean 0 and variance, resulting  ture weightsWW and meta-feature weighfon the training
in a standard ridge regression model that treats all feaset, and used the validation set to select the optimal ridge
tures as equally likely to be relevant (we also experimentedbenalty parameter for the baseline model. The reported re-
with L,-regularized regression, but the performance wassults are averaged over 5 trials. Our measure of error is root
slightly worse, so we omit those results). While our fea-mean squared error (RMSE).
ture representation ignores the information present in the The meta-feature weights learned by the model are intu-
mere presence of movie ratings, in our experience withtive: the meta-features with the highest weights are those
the full Netflix dataset, the ridge regression model is com-corresponding to specific popular actors such as Adam San-
petitive with other collaborative filtering approachestsuc dler, Arnold Schwartzeneger and many others. Certain di-
as memory-based methods and generative models. Noteectors such as Quentin Tarantino and Richard Donner also
however, that we do not aim to compete with all state-of-have meta-features with high weights suggesting that view-
the-art collaborative filtering algorithms, but rathert@ke  ers who liked some of their movies tend to like all. From
uate our approach on this real-world data set. the shared descriptive keyword meta-features, some of the
Table 1.Meta-features used in our collaborative filtering domain ON€S With the highest weights are whether the two movies
1.Genre: Whether the movies share a particular genre. contain vulgarity or whether they involve sword-fights or

2 DecadeWhether both movies were released in warriors. Among the shared genre meta-features the most
2000s, 1990s, 1980s, 1970s or a previous decade. predictive ones are the Sports and Musical genres.

4 Actors/Directors: How many and which From this discussion, it is clear that not all prediction
actors/directors the movies have in common. tasks in this domain are associated with high-weight meta-
5 Keywords: How many and which keywords features. For example, when a prediction task movie does
the movies have in common. not have any of these significant actors, directors, or key-

words, its associated meta-features are likely to haviyfair
low weights. In this case, the range of relevance weights for
L . o different features will be fairly narrow, giving rise to anu

for m’ is more likely to be relevant to predicting when diff tiated rel ior Indeed. Fi 1sh h
m’ andm are similar, in some sense. To capture this in- merentiated relevance priol. ‘ndeed, Figure 1 Snows the
tuition, we model th,e relevance of features using meta-r(alatlve RMSI._: Improvement the_meta-pnor model gives
features that are based on shared attributes of the featu(r)e\z/erthe baseline model (when training over 100 examples),
movie and prediction task movie. We associated each Net- 2To calculate RMSE, we used the following formulation:

flix movie title with a corresponding entry in the Internet
Movie Database (IMDBY,and extracted a rich set of at- RMSE, — \/Zu Yy [u] — wi T@p [u]] @

tributes: movie genre, actors, director, and many descrip- Tom,

In this domain, the features for rating one movie
are ratings for other movies:'. Intuitively, the rating

1 . .
Downloadable in text format fromuw. i mib. com wheren,,, is the number of ratings for movie in the test set.
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as a function of the range of learned relevance of its feagains over the baseline model diminish. This is to be ex-
tures. When the learned relevance of the features lies ipected since, in such cases, there is usually sufficient in-
a narrow range, we see little improvement. Importantly,formation in the training set, reducing the importance of

however, the meta-level prior model is robust and neveregularization.

leads to a significant reduction in RMSE. When the fea-

ture relevance range is wider, we see that the improvemer o92r :
of the model is most dramatic, reaching as high as 10% fo o
some movies. We therefore focused the remainder of ou 08f
evaluation to those tasks which exhibit an average featur “
relevance range greater thau®05. ossf
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We also performed drans-Test experiment, in which
5 , , , , , , , , , , we used 60% of the movies in our dataset and 500 training
0 0005 001 0-015Ta;;~gfamrg-s;gvanggfangg-m 0.04 0045 005 examples per movie, to learn the meta-feature weights
We then tested the relevance transfer ability of the meta-
prior on the remaining 40% of the movies, by using the

Figure 1.Relative RMSE improvement over a ridge regression

baseline of the meta-level prior model with a training set of 100|eamed meta-feature weightito construct the feature rel
examples from each movie. Each point is a movie task he x- 9

axis is the range of the learned feature relevances for each movi€vance prior for each unseen movie, and estimating the
max,, B f, ., —min, B" £, ... The results are averaged weightsw from the movie’s training set. We set the weight

over 5 random splits of training and test sets. for the bias meta-feature for the unseen task to the optimal
baseline inverse ridge penalty, as determined using the val
idation set. Figure 3 shows the generalization ability ef th
el meta-prior model for training set sizes ranging from 10 to

' 300. We can see that the transferred prior improves per-
formance significantly. The improvement peaks at a train-
ing set size of 50; this indicates that, when using fewer
examples, the noise in the training set overwhelms the ben-
efit of the transferred prior, whereas for very large numbers
of training instances, the baseline model does an adequate
job of selecting relevant features, even without an infame
prior. This result validates the usefulness of our alganith

in the transfer learning setting, where a new predictiok tas
has a relatively small number of training instances.

" 100200 00 Traim;gggt sve 2000 5.2. Verb Argument Classification
We applied our algorithm to the natural language task of

Figure 2.Improvement in RMSE of the meta-prior model over the semantic role labeling. Given a sentence containing atarge
baseline for th&Sen-testwith varying training set sizes. verb, we want to label the semantic arguments, or roles, of

that verb. For example, for the verb “eat”, a correct lakgelin

of the sentence “Tom wants to eat a salad with croutons” is

In Figure 2, we show the effect of training set size on {ARGO(Eater)="Tom”,ARG1(Food)="salad’ In the full

generalization performance in tH@en-Test experiment. semantic role labeling task, every phrase in the sentence
As more training examples are available, the performancenust be labeled as a being an argument to the verb or not,



Learning a Meta-Level Prior from Multiple Related Tasks

S Tom: NP S(NPyVP>S»VP» VBT  which kernels are not able to do.
NP VP salad: NP1«VP~>T In order to increase the discriminative power of
Tom wants S croutons: PP(with«NP 1+ VP> T these features, we also include a number of generaliza-
VP tions/specializations of these features. Specifically, fo
— each node we allow three choices: completely general
o VP (“*"), part-of-speech only (e.g., “NP"), or part-of-spdec
eat NP plus head word (“NP:Tom"). For each edge, we have two
NP PP choices: general (“-") or specific (e.g.—"). Thus, an
a salad with NP example feature is “NP:Tom — *» VP”. We generate
croutons all possible combinations of these choices; for a total of

3*2*3*2*3 = 108 different representations for a given se-
Figure 4.Example of parse tree features for semantic role Iabelingquence of 3 nodes (and 2 edges). Note that this set of fea-
tures includes the head word of the phrase being classified,
and then labeled with a role from a set of approximately 30using features of the form “NP:Tom — * — *”. We have one
different roles. In these experiments we tested on a someneta-feature for each feature, which specifies which of the
what simpler task: we first extracted all phrases which werel08 types it is, and therefore its degree of specificity.
either ARGO (Agent) or ARG1 (Patient/Theme), and then We compared two models: a baseline model — logistic
attempted to classify each phrase as either ARGO or ARGIregression with input features as described; and our meta-
We train and test on the PropBank corpus (Kingsburyfeature model using the same feature set and the meta-
et al., 2002), which labels the arguments of every verb infeatures described above. Both models include, for each
approximately 50,000 sentences. Hand-labeled parses afeature, a global, unregularized mean paramgtewhich
also available for this corpus; we take these parses as.giveallows feature means to be shared across tasks; we modify
As usual, we considered each verb (frame) as a differenEquation 2,
task. There were a total of 4216 verbs with at least one

2
argument labeled either ARGO or ARG1. We filtered OUt P(w,, | B, i, Frr) = ;exp <M)
tasks that did not have at least 3 instances, resulting i 261 \/ 278" fou B frk

tasks. For each task, we randomly split the instances into a
training set, validation set, and test set, ensuring thethea  Thus, we learn for each feature two pieces of informa-
set had at least one instance for each set. As briefly menion: the bias of the feature towards ARGO vs. ARG1, and
tioned, this data illustrate the situation where featumes a how relevant the feature is for distinguishing ARGO from
not much shared over the tasks: 80% of 1154673 featureaRG1. This allows us to distinguish between features that
appear in<10 tasks and 21% appear in only one task. always indicate a particular class (for example, some words
A variety of features of the sentence and the phrase beare usually ARGO0) and thus have high global mean but
ing classified are used for semantic role labeling (Pradhafow variance; and features that are very relevant for decid-
etal., 2005). The mostimportant features are the head worthg ARGO vs. ARGL1, but have different means for differ-
of the phrase (e.g., “Tom” or “salad” above), and the pathent tasks. For example, whether a phrase is the subject of
from the verb to the phrase being classified; these featurehe sentence is highly relevant for determining whether the
are illustrated in Figure 4 for our example sentence. phrase is the ARGO or ARG1,; but the subject can map to
For our results we consider a set of features that atdifferent arguments for different verbs: for “say”, the sub
tempts to take advantage of structure within the paths fronject is nearly always ARGO, while for “increase” it is often
the verb to the phrase. In Figure 4, “Tom” has a fairly ARG1 (“stocks increased”). The meta-features allow us to
complicated path to the verb. In the sentence “Tom ate &hoose these variances by, for example, indicating that fea
salad.” the path from “Tom” to “eat” is simplefy P «—  tures which include the direction of the edges tend to be
S(NP) — VP — T. However, in both cases the path more informative about whether the phrase is the subject
contains the segmedf P «— S(NP) — VP. This ex- of the sentence, and thus have high variances.
ample suggests that we take subsequences of the path asFigure 5 shows the results of these two models on a
features in order to generalize between different pathis wit Gen-Testexperiment, applied to a random subset of 500 of
common elements. To keep the number of features fronthe 2610 tasks. The tasks are grouped into buckets based on
becoming too large, we restricted to segments containinghe number of training examples. For tasks with few train-
exactly 3 nodes. Note that previous work (Moschitti, 2004)ing examples, our model significantly improves over the
has used string or tree kernels to find common structurdaseline, decreasing error by 25% for verbs with 1-2 train-
between paths; our feature set is somewhat similar to theng examples. As we would expect, as the amount of train-
implicit feature set encoded in these kernels. The differing data increases the effect of the prior decreases, and the
ence here is that we will regularize each feature separatelyneta-features have less effect. However, as labeledrigaini



Learning a Meta-Level Prior from Multiple Related Tasks

i
©

in most cases, all features are taken to be equally relevant,
a priori. The best-known approach for automatically in-
ferring the relevance of features is automatic relevanee de
termination (ARD) (Neal, 1995; MacKay, 1992). As in
our model, it models the distribution over a feature weight
w; to be a Gaussian with med@nand variancey;. Given
a classification data sétc.,,, ym)m=1..n, it chooses fea-
ture relevancesy that maximize the marginal likelihood
p(y|a). ARD-based methods also aim to estimate the vari-
ance of each feature, while there are significant difference
with our method. Our approach jointly optimizes the fea-
ture weights and the metaprior from multiple related tasks
o= 34 58 0.1 17-32 331000 using the meta-features, while the ARD-based models es-
Treining Set Size timate the relevance based on the marginal likelihood in-
tegrated over the weights with non-informative prior for a
single task. Thus, our model identifies relevant features by
looking for features with different biases for differenskas.

. . . The learned3’s for the meta-features can also give insight
data is scarce in most language problems, improvement for

sparse-data cases can be guite imoortant in practice about the domain. Additionally, our formulation is a con-
P q P P ’ vex optimization problem over both the weights and the

metaprior, which allows efficient optimization techniques
guaranteed to converge to the global optimum.

The concept of transfer learning was introduced by Bax-
ter (1997), Caruana (1997) and Thrun (1996). Multiple
approaches to transfer learning have been defined, includ-
ing (Heskes, 2000; Evgeniou et al., 2005; Baxter, 2000;
Teh et al., 2005). They vary in the model they use for how
different tasks are related, which induces different typies
information transfer between the tasks.

Somewhat related to our approach is the transfer of sim-
ilarity between actual feature weights, as commonly done,
for example, in a hierarchical Bayesian framework (Mc-
Callum et al., 1998). Most simply, the weights are asserted

= = = =
o N i )
T T T T

Average Misclassification Rate (%)
®
T

Figure 5.Gen-testfor semantic role labeling. Blue(left) is base-
line, Red(right) is the meta-feature model.

10

Average Misclassification Rate (%)
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Training Set Size to be similar between classes, but some work defines the
weights in different tasks to be a linear combination of
Figure 6.Trans-testfor semantic role labeling the same set of components. For example, Taskar et al.

(2003) and Fink et al. (2006) both define the weights as-
Figure 6 shows the results for Brans-Test regime,  sociated with a feature (albeit using very different models
where the model is trained on the same 500 tasks abovend learning algorithms) as a linear combination of the fea-
and the learneg is then used for each of the remaining ture's meta-features. Zhang et al. (2005) uses a similar de-
2110 tasks. We again improve over the baseline model, akomposition of the feature weights, but automaticallyisfe
though here the largest improvements are for tasks with ghe components in the weight decomposition using tech-

moderate amount of training data. nigues based on independent component analysis (ICA);
this approach avoids the need for a set of pre-defined meta-
6. Related Work features, but (conversely) does not take advantage of this

This paper focuses on estimating the relevance of inpuprior knowledge when available. All of these approaches
features from an ensemble of related tasks, with the unfocus on modeling the similarity between the values of the
derlying assumption that similar features have similar rel feature weights, whereas we focus on transferring infor-
evance. Our algorithm lies at the intersection of two linesmation regarding their relevance. More formally, in our
of research: feature selection and multi-task (or trapsferprobabilistic setting, we learn a model for tharianceof a
learning. weight rather than its mean.

Traditionally, a prior for feature relevance is selected Some recent works considered the variance in multiple
by hand, or via cross-validation. This approach is feasitelated tasks. Yu et al. (2005) proposed an EM-based al-
ble only for a very small number of parameters, and hencegorithm for learning a Gaussian process from multiple re-
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lated tasks based on a hierarchical Bayesian frameworkhe application to modeling variance is far from obvious.
Argyriou et al. (2006) learned the co-variance matrix of aReferences
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