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Abstract
In many prediction tasks, selecting relevant fea-
tures is essential for achieving good generaliza-
tion performance. Most feature selection algo-
rithms consider all features to be a priori equally
likely to be relevant. In this paper, we use trans-
fer learning — learning on an ensemble of related
tasks — to construct an informative prior on fea-
ture relevance. We assume that features them-
selves have meta-features that are predictive of
their relevance to the prediction task, and model
their relevance as a function of the meta-features
using hyperparameters (calledmeta-priors). We
present a convex optimization algorithm for si-
multaneously learning the meta-priors and fea-
ture weights from an ensemble of related predic-
tion tasks which share a similar relevance struc-
ture. Our approach transfers the “meta-priors”
among different tasks, which makes it possi-
ble to deal with settings where tasks have non-
overlapping features or the relevance of the fea-
tures vary over the tasks. We show that learning
feature relevance improves performance on two
real data sets which illustrate such settings: (1)
predicting ratings in a collaborative filtering task,
and (2) distinguishing arguments of a verb in a
sentence.

1. Introduction
In many prediction tasks, we are faced with a huge num-

ber of features. The use of effective feature selection al-
gorithms or regularization method is critical for achieving
good performance. Much effort has been devoted to the
topic of feature selection, and many approaches have been

Appearing inProceedings of the24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

proposed (see Kaelbling (2003) for a recent overview).
Most feature selection algorithms treat all candidate fea-
tures as equally likely,a priori, to be relevant, and use the
data alone to select among them. In many cases, however,
we may have reason to believe that some features may in-
nately be more or less likely to be relevant. For example,
consider a collaborative filtering task, where we predict a
user’s preference for one productp based on his observed
preferences for others. Here, the preferences for certain
products — e.g., those similar or related top — are more
likely to be relevant top than others. In another exam-
ple, consider inferring protein function from a set of motifs
(short segments) in its sequence. Here, conserved motifs,
or those on the surface of the protein, are more likely to be
relevant.

In these examples, and in many others, a featurek can
be characterized by a set ofmeta-featuresfk that describe
both the properties of the feature and its potential relation-
ship to the prediction problem. In the collaborative filter-
ing example, a product serving as a feature may be charac-
terized by meta-features such as its price range or its sim-
ilarity (along different dimensions) to the target product.
In the protein prediction example, a motif may be charac-
terized by meta-features such as its conservation score or
the composition of hydrophilic amino acids. We may wish
to utilize these meta-features to construct a more informed
prior over feature relevance. In most cases, however, we
do not have enough prior knowledge to determine exactly
how much effect, or even in which direction, each of these
meta-features has on feature relevance. Thus, a key prob-
lem is to learn the hyperparameters (a meta-level prior) that
characterize our prior on the relevance of a feature in terms
of its meta-features. While cross-validation is often used
to estimate meta-parameters such as these, the number of
meta-features in many applications can be quite large, ren-
dering a standard cross-validation regime intractable.

In this paper, we describe atransfer-learningapproach
for estimating these hyperparameters. In the transfer learn-



Learning a Meta-Level Prior from Multiple Related Tasks

ing paradigm, first proposed by Baxter (1997); Caruana
(1997); Thrun (1996), one aims to achieve better general-
ization by considering multiple related learning tasks, and
transferring information among them. Here, we use an en-
semble of prediction tasks where similar types of features
tend to be relevant. Although information about the actual
values of parameters is commonly transferred in this set-
ting, the problem of learning informed models of feature
relevance has been largely unexplored; see Sec. 6 for a dis-
cussion of prior work.

Our approach applies to the class of generalized lin-
ear models (McCullagh & Nelder, 1989), where the pre-
dicted target is a function of a weighted linear combina-
tion of the features. In general, all features are assumed
to have zero mean Gaussian prior with the same variance.
In our case, however, we take the prior variance to be a
weighted linear combination of the feature’s meta-features,
where the weights are the model hyperparameters (called
meta-priors). The objective function of our formulation is
jointly convex in the feature weights in each task and the
meta-priors shared across the tasks. Our model transfers
the meta-priors across different tasks and generatlizes the
relevance of the features in each task, which makes it pos-
sible to handle the cases where tasks have non-overlapping
features and the relevance of the features vary over the
tasks. Moreover, we show that two well-known feature se-
lection methods, i.e.,L1-regularization (Tibshirani, 1996)
and group Lasso (Yuan & Lin, 2006), are special cases of
our general approach.

We apply our method to two real world data sets. The
first is a collaborative filtering task, where we predict user
ratings for movies in (a subset of) the Netflix data. The
second is the natural language task ofsemantic role label-
ing (Gildea & Jurafsky, 2002), where we aim to identify
which words in the sentence correspond to which seman-
tic argument of a verb (e.g., for the verb “throw” who is
the thrower and what was thrown). We show that, by ty-
ing together the feature selection decisions in our ensemble
of tasks, we obtain better generalization to unseen test data
in all of them. Even more interestingly, we show that our
method also allows us to transfer prior knowledge on fea-
ture relevance, in the form ofβ, to new prediction tasks, al-
lowing us to achieve significantly better performance with
small amounts of training data.

2. Transfer Learning Formulation
Our problem formulation assumes the existence of an

ensemble ofR supervised learning tasks. Each taskr =
1, . . . , R is associated with aresponse variableyr and a
set of Kr features, denotedxr1, . . . , xrKr

. The features
themselves may or may not be shared among the prediction
problems. We usexr to denote the feature vector associ-
ated with problemr.

We aim to learn the parameters of a probabilistic model
that definesP (yr | xr). Our framework applies to the class
of generalized linear models, where this conditional distri-
bution is defined in terms ofg(w⊤

r xr), for some vector
of task-r parameterswr = (wr1, . . . , wrKr

) ∈ R
Kr and

some pre-selected gating functiong. For example, we can
consider the case where theyr ’s are discrete binary-valued
variables andg is the logit function:

P (yr = 1 | xr,wr) =
1

1 + exp(−w⊤
r xr)

, (1)

where, for simplicity of notation, we ignore the bias (inter-
cept) term, under the assumption that one of the features is
always set to1. Alternatively,yr could be continuous with
a Gaussian distribution whose mean isw⊤

r xr. We can also
consider the case whereyr is continuous and its distribu-
tion is a linear Gaussian whose mean isw⊤

r xr.
As is typically done, we associate each feature weight

wrk with a a Gaussian prior with mean zero and variance
γ: P (w | γ) = 1√

2πγ
exp(−w2

2γ
). In most applications,

all parameters in a model are taken to have the same prior,
encoding a similar bias towards0. In our setting, we allow
a differentγrk for each weightwrk. In order to achieve
effective generalization performance, we modelγrk as a
weighted linear combination of meta-features of the fea-
turexrk. More precisely, we assume that each featurexrk

is associated with a meta-feature vectorfrk ∈ R
ℓ, which

encodes certain characteristics of the feature that may be
predictive of its relevance to the prediction task. The meta-
features may depend either on the feature alone, or on the
featureandon the prediction task.

Given a meta-feature vectorfrk, we take the prior
P (wrk) to be a Gaussian distribution with varianceγrk =
β⊤frk (constrained to be positive), whereβ is the set of
model hyperparameters:

P (wrk | β,f rk) =
1

√

2πβ⊤frk

exp(− w2
rk

β⊤frk

). (2)

We also define a prior distribution over the varianceγrk

(= β⊤frk) to be the gamma distribution:

P (γrk) ∝ γ
(D−1)
rk exp(−Cγrk) γrk ≥ 0, (3)

whereC andD are hyperparameters of the gamma distri-
bution; we discuss below the choice ofC,D. This prior
distribution over theγrk ’s serves to bias their values to-
wards zero, which helps prevent the overfitting that can oc-
cur when the variance of the weight prior is too high.

We note that the meta-features should be chosen so that
the feasible set{β : ∀r, k β⊤f rk > 0} is nonempty. We
can guarantee this feasibility condition by restricting the
meta-features to have non-negative values or by adding a
”bias” meta-feature with a large enough positive value.
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Now, consider a data setX,Y consisting ofM train-
ing instances for each of ourR tasks (where we assume,
purely for simplicity of notation, that all tasks have the
same number of instances). Thus,X is a set of vectors
xr[1], . . . ,xr[M ], for r = 1 . . . , R, where eachxr[m] ∈
R

Kr ; andY is a set of responsesyr[1], . . . , yr[M ]. Denot-
ing by W the vector of all of the parametersw1, . . . ,wR,
overall we can define a joint conditional distribution:

P (Y ,W ,β |X,F) =
R

∏

r=1

M
∏

m=1

P (yr[m] | xr[m],wr)

·
R

∏

r=1

Kr
∏

k=1

P (wrk | β,f rk)P (γrk),

whereγrk = β⊤frk. Here, the first term is our generalized
linear model, and the two terms in the second product are
defined in Eq. (2) and Eq. (3).

3. Optimization Algorithm
We choose to address our learning problem by finding

the jointmaximum a posteriori (MAP)assignment to all of
the parameterswr, r = 1, . . . , R and the hyperparameters
β, in the objective Eq. (4). To simplify the objective func-
tion, we fixD in Eq. (3), so thatγ(D−1)

rk in Eq. (3) cancels
out 1/

√
2πγrk in Eq. (2). With this assignment, we take

the logarithm of Eq. (4), and obtain a joint log-likelihood
function:

log P (Y ,W ,β |X,F) (4)

=

R
∑

r=1

M
∑

m=1

log P (yr[m] | xr[m],wr)

−
R

∑

r=1

Kr
∑

k=1

(

w2
rk

β⊤frk

+ Cβ⊤frk + Const

)

,

whereConstdoes not depend on the optimization parame-
ter. The other hyper-parameter,C, will be estimated using
cross-validation.

Critically, this objective function is jointly convex over
the optimization variablesW andβ. Therefore, it can be
solved using a range of efficient convex optimization algo-
rithms, any of which is guaranteed to find the unique global
optimum. We choose to use a coordinate ascent procedure
over the two sets of parametersW andβ.

For optimizingW given the currentβ(t), we solve:

arg min
W

R
∑

r=1

M
∑

m=1

− log P (yr[m] | xr[m],wr) (5)

+
R

∑

r=1

Kr
∑

k=1

w2
rk

β⊤frk

.

This equation has the same form as a generalized linear
model with a weightedL2 regularization penalty, and can

be solved using standard gradient methods (or factorization
methods in the case of linear regression).

To optimizeβ givenW (t), we solve:

arg min
β

R
∑

r=1

K
∑

k=1





w
(t)
rk

2

β⊤f rk

+ Cβ⊤frk



 (6)

subject toβ⊤frk > 0.

This objective is convex inβ, and can therefore be opti-
mized efficiently using standard methods.

4. Sparse Norm Equivalence
Let Fn be a set of identifiers(r, k) of the features (for

the taskr and featurek) that are all associated with the
samenth meta-feature, andβn be the meta-prior corre-
sponding toFn. For simplicity of notation, we assume
that the shared meta-feature always takes on the value 1.
Then, the weight prior for the features from Eq. (4) is
∑

n

∑

(r,k)∈Fn
(

w2

r,k

βn
+Cβn). Applying the optimality con-

dition for β, we can show that the above weight prior term

is equivalent to:
∑

n

√

2C|Fn|
√

∑

(r,k)∈Fn
w2

r,k. As a re-

minder, the group Lasso penalty for a subset of weights

{wi}i∈F takes the form
∑

n

√

∑

i∈Fn
w2

i . The effect of

this type of regularization is to bias a group of weights to
all go to zero. In the extreme case, when each feature is
modeled with a unique identity meta-feature, i.e.|Fn| = 1
for all n, the prior reduces to a standardL1-norm.

5. Experimental Results
We train our model over an ensemble ofR prediction

tasks, jointly learning both the weightsw1, . . . ,wR and
the hyper-parametersβ. We then evaluate the results rela-
tive to two different types of learning setups. In theGen-
Test setup, we evaluate the generalization of the learned
weightsw1, . . . ,wR to new instances from the training
tasks. This setup tests the ability of our approach to utilize
the meta-level information on the features in order to select
more relevant, better generalizing features. In theTrans-
Testsetup, we use theβ learned on theseR tasks as a prior
for new, previously unseen tasks. We then learn onlyW

on each newtest task, usingβ as a prior, and evaluate gen-
eralization performance on new test-task instances. This
setup evaluates whether information learned from previous
learning tasks can be used to allow learning of new tasks
using a lot less data.

5.1. Collaborative Filtering
We applied our algorithm to the task of collaborative fil-

tering for movie ratings. Specifically, we considered the
problem of predicting ratings assigned to movies by view-
ers in the Netflix movie rating dataset.The full dataset con-
sists of nearly 100 million discrete ratings from 1 to 5 that
480189 users assigned to 17770 movies. For our experi-
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ments, we selected the 5000 users with the highest number
of ratings, as well as the 600 movies with the highest num-
ber of ratings, and normalized the ratings for each movie
so that they have 0 mean and unit variance.

As often done in collaborative filtering (Marlin, 2004),
we view each movie as a separate prediction task, in which
the instances are users, and the features are the ratings that
the user has assigned to other movies that he has seen.
More precisely, in the prediction task for moviem, user
u’s ratings are mapped to a feature vectorxm[u], in which
theith entry is either the (normalized) rating the user gave
to theith movie, or0 if the user has not rated theith movie
which is equivalent to mean imputation since movie ratings
have mean0. The response variable is the ratingym[u] that
the user gave to moviem. We performed feature selec-
tion for each prediction task by discarding feature movies
whose ratings have a Pearson correlation coefficient with
absolute value of less than 0.20 with the target movie’s rat-
ings.

We use a linear regression model:ym N(w⊤
mxm, ǫ2).

For our baseline model, we add a Gaussian prior over
the weightswm with mean 0 and varianceγ, resulting
in a standard ridge regression model that treats all fea-
tures as equally likely to be relevant (we also experimented
with L1-regularized regression, but the performance was
slightly worse, so we omit those results). While our fea-
ture representation ignores the information present in the
mere presence of movie ratings, in our experience with
the full Netflix dataset, the ridge regression model is com-
petitive with other collaborative filtering approaches such
as memory-based methods and generative models. Note,
however, that we do not aim to compete with all state-of-
the-art collaborative filtering algorithms, but rather to eval-
uate our approach on this real-world data set.

Table 1.Meta-features used in our collaborative filtering domain
1.Genre: Whether the movies share a particular genre.
2.Decade:Whether both movies were released in
2000s, 1990s, 1980s, 1970s or a previous decade.
4.Actors/Directors: How many and which
actors/directors the movies have in common.
5.Keywords: How many and which keywords
the movies have in common.

In this domain, the features for rating one moviem
are ratings for other moviesm′. Intuitively, the rating
for m′ is more likely to be relevant to predictingm when
m′ andm are similar, in some sense. To capture this in-
tuition, we model the relevance of features using meta-
features that are based on shared attributes of the feature
movie and prediction task movie. We associated each Net-
flix movie title with a corresponding entry in the Internet
Movie Database (IMDB),1 and extracted a rich set of at-
tributes: movie genre, actors, director, and many descrip-

1Downloadable in text format fromwww.imdb.com.

tive keywords about the movie (such as “cult movie”, “vi-
olence”, “organized crime” etc.). We discarded actors with
fewer than 25 movies in the full Netflix dataset, directors
with fewer than 5 movies, and keywords which appear in
fewer than 80 movies. We defined a meta-feature vector
fmm′ for each prediction moviem and feature moviem′

pair, as shown in Table 1. Notice that these meta-features
represent properties of thecombinationof a feature and a
prediction task movie, and thus illustrate the ability of our
model to have a feature’s relevance can vary depending on
the prediction task. Altogether, this set consists of around
1400 meta-features, from which selected the 200 most cor-
related with he magnitude of the weights of a ridge regres-
sion baseline model learned over a random subset of the
training data. In addition, for each task we also include a
unique “bias” meta-feature whose value is always 1.

In our Gen-Testexperiment, we used all 600 movies in
our dataset as tasks, each with a training set of fixed size
M (M ranging from 100 to 2000). We split the remain-
ing ratings for each movie into a validation set, consisting
of 10% of the ratings, and a test set. We trained the fea-
ture weightsW and meta-feature weightsβ on the training
set, and used the validation set to select the optimal ridge
penalty parameter for the baseline model. The reported re-
sults are averaged over 5 trials. Our measure of error is root
mean squared error (RMSE).2

The meta-feature weights learned by the model are intu-
itive: the meta-features with the highest weights are those
corresponding to specific popular actors such as Adam San-
dler, Arnold Schwartzeneger and many others. Certain di-
rectors such as Quentin Tarantino and Richard Donner also
have meta-features with high weights suggesting that view-
ers who liked some of their movies tend to like all. From
the shared descriptive keyword meta-features, some of the
ones with the highest weights are whether the two movies
contain vulgarity or whether they involve sword-fights or
warriors. Among the shared genre meta-features the most
predictive ones are the Sports and Musical genres.

From this discussion, it is clear that not all prediction
tasks in this domain are associated with high-weight meta-
features. For example, when a prediction task movie does
not have any of these significant actors, directors, or key-
words, its associated meta-features are likely to have fairly
low weights. In this case, the range of relevance weights for
different features will be fairly narrow, giving rise to an un-
differentiated relevance prior. Indeed, Figure 1 shows the
relative RMSE improvement the meta-prior model gives
over the baseline model (when training over 100 examples),

2To calculate RMSE, we used the following formulation:

RMSEm =

s

P

u
ym[u] − wm

⊤xm[u]]

nm

(7)

wherenm is the number of ratings for moviem in the test set.
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as a function of the range of learned relevance of its fea-
tures. When the learned relevance of the features lies in
a narrow range, we see little improvement. Importantly,
however, the meta-level prior model is robust and never
leads to a significant reduction in RMSE. When the fea-
ture relevance range is wider, we see that the improvement
of the model is most dramatic, reaching as high as 10% for
some movies. We therefore focused the remainder of our
evaluation to those tasks which exhibit an average feature
relevance range greater than0.005.
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Figure 1.Relative RMSE improvement over a ridge regression
baseline of the meta-level prior model with a training set of 100
examples from each movie. Each point is a movie taskm. The x-
axis is the range of the learned feature relevances for each movie:
maxm′ β⊤fm,m′ − minm′ β⊤fm,m′ . The results are averaged
over 5 random splits of training and test sets.
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Figure 2.Improvement in RMSE of the meta-prior model over the
baseline for theGen-testwith varying training set sizes.

In Figure 2, we show the effect of training set size on
generalization performance in theGen-Test experiment.
As more training examples are available, the performance

gains over the baseline model diminish. This is to be ex-
pected since, in such cases, there is usually sufficient in-
formation in the training set, reducing the importance of
regularization.
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Figure 3.Improvement in RMSE of the meta-prior model over the
baseline for theTrans-testwith varying training set sizes.

We also performed aTrans-Test experiment, in which
we used 60% of the movies in our dataset and 500 training
examples per movie, to learn the meta-feature weightsβ.
We then tested the relevance transfer ability of the meta-
prior on the remaining 40% of the movies, by using the
learned meta-feature weightsβ to construct the feature rel-
evance prior for each unseen movie, and estimating the
weightsw from the movie’s training set. We set the weight
for the bias meta-feature for the unseen task to the optimal
baseline inverse ridge penalty, as determined using the val-
idation set. Figure 3 shows the generalization ability of the
meta-prior model for training set sizes ranging from 10 to
300. We can see that the transferred prior improves per-
formance significantly. The improvement peaks at a train-
ing set size of 50; this indicates that, when using fewer
examples, the noise in the training set overwhelms the ben-
efit of the transferred prior, whereas for very large numbers
of training instances, the baseline model does an adequate
job of selecting relevant features, even without an informed
prior. This result validates the usefulness of our algorithm
in the transfer learning setting, where a new prediction task
has a relatively small number of training instances.

5.2. Verb Argument Classification
We applied our algorithm to the natural language task of

semantic role labeling. Given a sentence containing a target
verb, we want to label the semantic arguments, or roles, of
that verb. For example, for the verb “eat”, a correct labeling
of the sentence “Tom wants to eat a salad with croutons” is
{ARG0(Eater)=“Tom”,ARG1(Food)=“salad”}. In the full
semantic role labeling task, every phrase in the sentence
must be labeled as a being an argument to the verb or not,
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Figure 4.Example of parse tree features for semantic role labeling

and then labeled with a role from a set of approximately 30
different roles. In these experiments we tested on a some-
what simpler task: we first extracted all phrases which were
either ARG0 (Agent) or ARG1 (Patient/Theme), and then
attempted to classify each phrase as either ARG0 or ARG1.

We train and test on the PropBank corpus (Kingsbury
et al., 2002), which labels the arguments of every verb in
approximately 50,000 sentences. Hand-labeled parses are
also available for this corpus; we take these parses as given.
As usual, we considered each verb (frame) as a different
task. There were a total of 4216 verbs with at least one
argument labeled either ARG0 or ARG1. We filtered out
tasks that did not have at least 3 instances, resulting in 2610
tasks. For each task, we randomly split the instances into a
training set, validation set, and test set, ensuring that each
set had at least one instance for each set. As briefly men-
tioned, this data illustrate the situation where features are
not much shared over the tasks: 80% of 1154673 features
appear in<10 tasks and 21% appear in only one task.

A variety of features of the sentence and the phrase be-
ing classified are used for semantic role labeling (Pradhan
et al., 2005). The most important features are the head word
of the phrase (e.g., “Tom” or “salad” above), and the path
from the verb to the phrase being classified; these features
are illustrated in Figure 4 for our example sentence.

For our results we consider a set of features that at-
tempts to take advantage of structure within the paths from
the verb to the phrase. In Figure 4, “Tom” has a fairly
complicated path to the verb. In the sentence “Tom ate a
salad.” the path from “Tom” to “eat” is simpler,NP ←
S(NP ) → V P → T . However, in both cases the path
contains the segmentNP ← S(NP ) → V P . This ex-
ample suggests that we take subsequences of the path as
features in order to generalize between different paths with
common elements. To keep the number of features from
becoming too large, we restricted to segments containing
exactly 3 nodes. Note that previous work (Moschitti, 2004)
has used string or tree kernels to find common structure
between paths; our feature set is somewhat similar to the
implicit feature set encoded in these kernels. The differ-
ence here is that we will regularize each feature separately,

which kernels are not able to do.
In order to increase the discriminative power of

these features, we also include a number of generaliza-
tions/specializations of these features. Specifically, for
each node we allow three choices: completely general
(“*”), part-of-speech only (e.g., “NP”), or part-of-speech
plus head word (“NP:Tom”). For each edge, we have two
choices: general (“–”) or specific (e.g. “→”). Thus, an
example feature is “NP:Tom – *→ VP”. We generate
all possible combinations of these choices; for a total of
3*2*3*2*3 = 108 different representations for a given se-
quence of 3 nodes (and 2 edges). Note that this set of fea-
tures includes the head word of the phrase being classified,
using features of the form “NP:Tom – * – *”. We have one
meta-feature for each feature, which specifies which of the
108 types it is, and therefore its degree of specificity.

We compared two models: a baseline model — logistic
regression with input features as described; and our meta-
feature model using the same feature set and the meta-
features described above. Both models include, for each
feature, a global, unregularized mean parameterµk which
allows feature means to be shared across tasks; we modify
Equation 2,

P (wrk | β, µk,f rk) =
1

√

2πβ⊤frk

exp

(

− (wrk − µk)2

β⊤frk

)

.

Thus, we learn for each feature two pieces of informa-
tion: the bias of the feature towards ARG0 vs. ARG1, and
how relevant the feature is for distinguishing ARG0 from
ARG1. This allows us to distinguish between features that
always indicate a particular class (for example, some words
are usually ARG0) and thus have high global mean but
low variance; and features that are very relevant for decid-
ing ARG0 vs. ARG1, but have different means for differ-
ent tasks. For example, whether a phrase is the subject of
the sentence is highly relevant for determining whether the
phrase is the ARG0 or ARG1; but the subject can map to
different arguments for different verbs: for “say”, the sub-
ject is nearly always ARG0, while for “increase” it is often
ARG1 (“stocks increased”). The meta-features allow us to
choose these variances by, for example, indicating that fea-
tures which include the direction of the edges tend to be
more informative about whether the phrase is the subject
of the sentence, and thus have high variances.

Figure 5 shows the results of these two models on a
Gen-Testexperiment, applied to a random subset of 500 of
the 2610 tasks. The tasks are grouped into buckets based on
the number of training examples. For tasks with few train-
ing examples, our model significantly improves over the
baseline, decreasing error by 25% for verbs with 1-2 train-
ing examples. As we would expect, as the amount of train-
ing data increases the effect of the prior decreases, and the
meta-features have less effect. However, as labeled training
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Figure 5.Gen-testfor semantic role labeling. Blue(left) is base-
line, Red(right) is the meta-feature model.

data is scarce in most language problems, improvement for
sparse-data cases can be quite important in practice.
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Figure 6.Trans-test for semantic role labeling

Figure 6 shows the results for aTrans-Test regime,
where the model is trained on the same 500 tasks above,
and the learnedβ is then used for each of the remaining
2110 tasks. We again improve over the baseline model, al-
though here the largest improvements are for tasks with a
moderate amount of training data.

6. Related Work
This paper focuses on estimating the relevance of input

features from an ensemble of related tasks, with the un-
derlying assumption that similar features have similar rel-
evance. Our algorithm lies at the intersection of two lines
of research: feature selection and multi-task (or transfer)
learning.

Traditionally, a prior for feature relevance is selected
by hand, or via cross-validation. This approach is feasi-
ble only for a very small number of parameters, and hence,

in most cases, all features are taken to be equally relevant,
a priori. The best-known approach for automatically in-
ferring the relevance of features is automatic relevance de-
termination (ARD) (Neal, 1995; MacKay, 1992). As in
our model, it models the distribution over a feature weight
wi to be a Gaussian with mean0 and varianceαi. Given
a classification data set(xm, ym)m=1..N , it chooses fea-
ture relevancesα that maximize the marginal likelihood
p(y|α). ARD-based methods also aim to estimate the vari-
ance of each feature, while there are significant differences
with our method. Our approach jointly optimizes the fea-
ture weights and the metaprior from multiple related tasks
using the meta-features, while the ARD-based models es-
timate the relevance based on the marginal likelihood in-
tegrated over the weights with non-informative prior for a
single task. Thus, our model identifies relevant features by
looking for features with different biases for different tasks.
The learnedβ’s for the meta-features can also give insight
about the domain. Additionally, our formulation is a con-
vex optimization problem over both the weights and the
metaprior, which allows efficient optimization techniques
guaranteed to converge to the global optimum.

The concept of transfer learning was introduced by Bax-
ter (1997), Caruana (1997) and Thrun (1996). Multiple
approaches to transfer learning have been defined, includ-
ing (Heskes, 2000; Evgeniou et al., 2005; Baxter, 2000;
Teh et al., 2005). They vary in the model they use for how
different tasks are related, which induces different typesof
information transfer between the tasks.

Somewhat related to our approach is the transfer of sim-
ilarity between actual feature weights, as commonly done,
for example, in a hierarchical Bayesian framework (Mc-
Callum et al., 1998). Most simply, the weights are asserted
to be similar between classes, but some work defines the
weights in different tasks to be a linear combination of
the same set of components. For example, Taskar et al.
(2003) and Fink et al. (2006) both define the weights as-
sociated with a feature (albeit using very different models
and learning algorithms) as a linear combination of the fea-
ture’s meta-features. Zhang et al. (2005) uses a similar de-
composition of the feature weights, but automatically infers
the components in the weight decomposition using tech-
niques based on independent component analysis (ICA);
this approach avoids the need for a set of pre-defined meta-
features, but (conversely) does not take advantage of this
prior knowledge when available. All of these approaches
focus on modeling the similarity between the values of the
feature weights, whereas we focus on transferring infor-
mation regarding their relevance. More formally, in our
probabilistic setting, we learn a model for thevarianceof a
weight rather than its mean.

Some recent works considered the variance in multiple
related tasks. Yu et al. (2005) proposed an EM-based al-
gorithm for learning a Gaussian process from multiple re-
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lated tasks based on a hierarchical Bayesian framework.
Argyriou et al. (2006) learned the co-variance matrix of a
Gaussian prior over the features. However, none of these
approaches generalize the relevance of the features, and
thus not applicable to problems with multiple tasks having
non-overlapping features or those with relevance varying
across the tasks.

Closest to our approach is the work of Raina et al.
(2006), who proposed the use of transfer learning for con-
structing a multivariate Gaussian prior with a full covari-
ance matrix for a given supervised learning task. This ap-
proach is similar to ours in that a parameter prior, involv-
ing both variances and covariances, is learned as a linear
function of a set of meta-features. However, in our ap-
proach, the prior is learned as part of a single, coherent
objective, which encompasses both the data likelihood and
the prior, and jointly optimizes over both parameters and
hyper-parmeters. Moreover, this objective is convex, al-
lowing efficient optimization and convergence to a unique
global optimum. By contrast, the approach of Raina et al.
first estimates covariances empirically, then learns a prior
from those estimates, and only then uses the prior for pre-
diction. Also, the use of bootstrap followed by learning on
multiple data sets is much more computationally intensive.

7. Discussion
In this paper, we propose a probabilistic approach for

learning an informed prior about feature relevance from
an ensemble of related tasks. Specifically, our approach
learns a variance for each feature as a function of its meta-
features. Therefore, our framework can be viewed as a
“paired” prediction problem: (1) predicting relevance of
features using meta-features and (2) predicting the tasks
using features. Our approach allows tranfer between tasks
with completely different feature sets and allows the fea-
ture relevance to vary over different tasks.

Our work raises several interesting directions for future
work. First, the framework we defined applies without
change to learning relationships between parameter values
in related tasks, by modeling their mean as a linear function
of meta-features. As we discussed above, other approaches
with the same goal have been proposed; but ours is a sim-
ple and efficient convex formulation, which may have ben-
efits in practice. In a different direction, one could follow
the work of Raina et al. (2006), and jointly learn a prior
of both the variances and the covariances of the weights,
thereby modeling not only their relevance, but also the re-
lationships between them. We believe that our formulation
could easily be extended to cover this case, without losing
convexity. Finally, it would be interesting to generalize our
methods to apply to cases where we do not have (enough)
pre-defined meta-features, by inducing factors in a decom-
position; this approach was taken by Zhang et al. (2005)
when modeling a prior over the mean of the weights, but

the application to modeling variance is far from obvious.
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