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Abstract

Graph clustering has become ubiquitous in
the study of relational data sets. We ex-
amine two simple algorithms: a new graph-
ical adaptation of the k-medoids algorithm
and the Girvan-Newman method based on
edge betweenness centrality. We show that
they can be effective at discovering the la-
tent groups or communities that are defined
by the link structure of a graph. However,
both approaches rely on prohibitively expen-
sive computations, given the size of modern
relational data sets. Network structure in-
dices (NSIs) are a proven technique for in-
dexing network structure and efficiently find-
ing short paths. We show how incorporating
NSIs into these graph clustering algorithms
can overcome these complexity limitations.
We also present promising quantitative and
qualitative evaluations of the modified algo-
rithms on synthetic and real data sets.

1. Introduction

Clustering data is a fundamental task in machine
learning. Given a set of data instances, the goal is
to group them in a meaningful way, with the interpre-
tation of the grouping dictated by the domain. In the
context of relational data sets — that is, data whose
instances are connected by a link structure represent-
ing domain-specific relationships or statistical depen-
dency — the clustering task becomes a means for iden-
tifying communities within networks.

For example, in the bibliographic domain, we find net-
works of scientific papers. Interpreted as a graph, ver-
tices (papers) are connected by an edge when one cites
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the other. Given a specific paper (or group of pa-
pers), one may try to find out more about the subject
matter by pouring through the works cited, and per-
haps the works they cite as well. However, for a suffi-
ciently large network, the number of papers to inves-
tigate quickly becomes overwhelming. By clustering
the graph, we can identify the community of relevant
works surrounding the paper in question. In the sec-
tions that follow, we discuss methods for clustering
such graphs into groups that are solely determined by
the network structure (e.g., co-star relations between
actors or citations among scientific papers).

Some of the simplest approaches to graph clustering
are also very effective. We consider two algorithms:
a graphical version of the k-medoids data cluster-
ing algorithm (Kaufman & Rousseeuw, 1990) and the
Girvan-Newman algorithm (2002). While both tech-
niques perform well, they are computationally expen-
sive to the point of intractibility when run on even
moderate-size relational data sets. Using the index-
ing methods described by Rattigan, Maier, and Jensen
(2006), we can drastically reduce the computational
complexity of these algorithms. Surprisingly, this in-
crease in scalability does not hinder performance.

2. Graph clustering algorithms
2.1. Evaluating clustering performance

Before examining the details of the graph clustering
algorithms, we introduce a framework for analyzing
and evaluating clustering performance. We evalu-
ate candidate algorithms on randomly generated uni-
form clustered graphs (Brandes et al., 2003; Delling
et al., 2006), whose link structure defines communi-
ties of nodes. The data generator constructs a graph
G = (V,E) as follows: Given a set of nodes V, ran-
domly assign each node to one of j clusters, such that
the final cluster sizes are normally distributed about
mean p. Pairs of nodes in the same cluster are con-
nected by a link with probability p;,, and pairs of
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nodes in different clusters are linked with probabil-
ity pout- By varying these parameters, we can adjust
the expected number of intra- and inter-cluster links
for each node, and in turn, control the level of sep-
aration between clusters. The degree of difficulty for
the clustering task can be captured by the expected
inter-cluster linkage for each node v € V:

degreeinter (’U) :|

inter-cluster linkage = E/
degree(v)

where degree(v) is the total number of links incident to
v, and degree;,,;.,.(v) is the number of links connecting
v to nodes outside its cluster.

We gauge clustering performance with two measures.
Pairwise intra-cluster accuracy (Ajntrq) is the propor-
tion of all pairs of nodes in the same cluster that are
predicted to be in the same clusters. Similarly, pair-
wise inter-cluster accuracy (Ajnter) is the proportion
of all pairs of nodes in different clusters that are pre-
dicted to be in separate cluster. These measures are
formally defined as follows:

Zuvvevpair—inu“a f(u7 U)

A' =
intra |‘/intra|

A — Eu’vevpairfinter(l B f(u7 ’U))
inter |‘/inter ‘

where f(u,v) is 1 when u an v are in the same pre-
dicted cluser and 0 otherwise, and Vpgir—intre and
Vpair—inter are the sets of intra- and inter-cluster pairs
of nodes, respectively. Both values measure our effec-
tiveness at reproducing the natural clusters found in
the graph. Another measure of clustering accuracy,
the Rand Index (Rand, 1971), can also be expressed
in these terms:

Aintra * Vpai'rfintra + Ainter * Vpairfintra
n

RandR =

For the results reported in this paper, the accuracy
measures are approximated by sampling 10,000 pairs
of nodes.

2.2. Graph k-medoids

The k-medoids algorithm (Kaufman & Rousseeuw,
1990) is fairly simple, and can be though of as a dis-
crete version of the ubiquitous k-means data cluster-
ing technique (MacQueen, 1967). The inputs to the
algorithm are k, the number of clusters to form, and
D : (z,y) — R, a distance measure that maps pairs of
instances to a real value. The procedure is as follows:
(1) randomly designate k instances to serve as “seeds”
for the k clusters; (2) assign the remaining data points
to the cluster of the nearest seed using D; (3) calculate

the medoid of each cluster; and 4) repeat steps 2 and 3
using the medoids as seeds until the clusters stabilize.

We extend the above procedure to the network domain
as the graph k-medoids algorithm. In graphs, we have
an intuitive measure for D: the geodesic distance, or
number of “hops” between nodes. As in conventional
k-medoids, we initialize our clusters by randomly se-
lecting k data points (in this case nodes in the graph)
as seeds and assigning all nodes to the cluster of the
nearest seed node. We choose medoids by computing
the local closeness centrality (Freeman, 1979) among
the nodes in each cluster and selecting the node with
the greatest closeness score. This process terminates
when the cluster medoids stabilize.

There are subtle differences between the graphical ver-
sion of k-medoids and its data-clustering counterpart.
For example, graph distance is highly sensitive to the
edges that exist in the graph. Adding a single “short-
cut” link to a graph can reduce the graph diameter, al-
tering the graph distance between many pairs of nodes.
Additionally, since graph distances are integers, it is
common for nodes to be equidistant to several cluster
medoids. We resolve conflicts by randomly selecting
a cluster; however, this can result in clusterings that
do not converge. We consider a clustering to be stable
if the number of cluster medoids that change between
iterations is below a certain threshold, typically 1-3%.
It is possible for several nodes to have identical close-
ness centrality, forcing the algorithm to select medoids
randomly.

To evaluate the clustering ability of graph k-medoids,
we generated 10 data sets of 1,000 nodes with mean
cluster sizes of 10, 20, and 50 (and standard devia-
tions of 2, 4, and 10, respectively), and averaged the
performance of 10 runs of graph k-medoids per struc-
ture to reduce variance. In Figure 1, we see that A;yq
decreases as inter-cluster linkage increases, becoming
unacceptably low for even modestly challenging clus-
tering tasks. Additionally, as the expected size of clus-
ters increases, the performance continues to drop. In
contrast, graph k-medoids scored adequately in terms
of inter-cluster accuracy, always maintaining A;pzer
scores above 0.99, 0.98, and 0.95 for clusters of size
10, 20, and 50, respectively.

Upon examination, most of the errors associated with
graph k-medoids involve nodes lying on the periph-
ery of clusters, resulting from the use of the integral-
valued graph distance within an algorithm that prefers
continuity. Figure 2 illustrates this primary source of
error. In this example, node A’s connections clearly
place it in the light shaded cluster. However, A is
directly linked to two medoids, and graph k-medoids
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Figure 1. Clustering performance of graph k-medoids for
synthetically generated data sets with mean cluster sizes
of 10, 20, and 50. As inter-cluster linkage increases, the
structural separation between clusters decreases, and the
clustering task becomes more difficult. The maximum vari-
ance of any point is 0.0017; results following exhibit similar
minimal variance as well. We omit pairwise inter-cluster
accuracy, which for all runs ranged between 0.95 and 0.99.

Figure 2. An illustrative example of typical graph k-
medoids clustering errors. Nodes A, B, and C are equidis-
tant from multiple medoids (enlarged nodes) and are erro-
neously clustered.

randomly (and incorrectly) assigns A to the white clus-
ter. Nodes B and C are incorrectly clustered in a simi-
lar manner. For this small example, the clustering has
Aintra = 0.611 and A;pier = 0.845.

Given the nature of the clustering errors depicted
in Figure 2, we can improve performance through a
novel post-processing step called modal reassignment
(MRA). We randomly iterate through the nodes of the
graph, and examine the cluster membership of the im-
mediate neighbors of each one. Then, we assign that
node to the most common cluster among the node’s
set of neighbors. While this additional step takes
O(|E|) operations, the performance improvements are
dramatic. Figure 3 compares graph k-medoids with
and without MRA on synthetic data. This revision to
the clustering algorithm is entirely separate from the
graph k-medoids process and can be applied to a graph

clustering generated by any algorithm. Furthermore,
this simple technique illustrates the power of utiliz-
ing network structure in ways that are not applicable
in traditional independent and identically distributed
data contexts.
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Figure 3. Clustering performance of k-medoids
modal reassignment

using

2.3. The Girvan-Newman algorithm

The Girvan-Newman algorithm (Girvan & Newman,
2002) is a divisive clustering technique based on the
concept of edge betweenness centrality. Betweenness
centrality is the measure of the proportion of shortest
paths between nodes that pass through a particular
link. Formally, betweenness is defined for each edge

e € I as: (w.v)

Ble)= Y TS

uge:v 9(u, v)

where g(u,v) is the total number of geodesic paths be-
tween nodes u and v, and g.(u,v) is the number of
geodesic paths between u and v that pass through e.
The algorithm ranks the edges in the graph by their
betweenness and removes the edge with the highest
score. Betweenness is then re-calculated on the modi-
fied graph, and the process is repeated. At each step,
the set of connected components of the graph is con-
sidered a clustering. If the desired number of clus-
ters is known a priori (as with k-medoids), we halt
when the desired number of components (clusters) is
obtained. The Girvan-Newman algorithm has been
shown to perform well on a variety of graph clustering
tasks (Newman, 2004a), but as we describe below, its
complexity can severely limit its applicability.

3. Network structure indices

The main problem with graph k-medoids as described
above is its complexity. As relational data sets be-
come larger, the scalability of the algorithm becomes
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an issue. Calculating (and storing) pairwise node dis-
tances (an O(|V|?) operation requiring O(|V'|?) space)
may be intractable for large graphs'. Similarly, the
Girvan-Newman algorithm can be hampered by com-
plexity. Calculating the edge betweenness for the links
in a graph is a O(|V||E|) operation, and the prob-
lem can become intractable for graphs with many
nodes. Tyler, Wilkinson, and Huberman introduced
a sampling-based approach to estimating betweenness
centrality (2005); however, even with this improve-
ment, finding the geodesic paths through the graph
to calculate betweenness can be a prohibitively expen-
sive set of operations. However, these limitations can
be alleviated through the use of a network structure
index.

A network structure index (NSI) is a scalable tech-
nique for capturing graph structure (Rattigan et al.,
2006). The index consists of a set of node annotations
combined with a distance measure. NSIs enable fast
approximation of graph distances and can be paired
with a search algorithm to efficiently discover short
paths between nodes in the graph. For use in the clus-
tering algorithms described in Section 2, we employed
a distance to zone (DTZ) index (Rattigan et al., 2006).
The DTZ indexing process creates d independent sets
of random partitions (referred to as dimensions) by
stochastically flooding the graph. Each dimension con-
sists of z random partitions (referred to as “zones”).
DTZ’s annotations store the distances between each
node and all zones across each dimension. Figure 4
illustrates an NSI with a single dimension and three

zones. The distance between two nodes u and v is
defined as:
Dprz(u,v) = Z distq(u, zone(v)) + disty (v, zone(u))

d

where disty(u,zone(v)) is the length of the shortest
path between u and the closest node in the same zone
as v. Creating the DTZ index requires O(|E|zd) time
and O(|V]zd) space. Since typical values of z and d
are < |V/|, a DTZ index can be created and stored
in a fraction of the time and space it takes to calcu-
late exact graph distances for all pairs of nodes in the
graph.

Both graph k-medoids and the Girvan-Newman meth-
ods can be modified to utilize an NSI. For graph k-
medoids, we substitute the DTZ annotation distance
for exact graph distance when assigning nodes to clus-
ters and calculating closeness centrality to determine
medoids. As illustrated in Figure 5, the performance
gains are dramatic.

!To be precise, the most efficient algorithm is currently
O(|V|*37%) (Coppersmith & Winograd, 1987)

Figure 4. A DTZ annotation for a single dimension and
three zones. The annotations store the graph distance be-
tween each node and the closest node in each zone. For
example, the node in the extreme lower-left of the graph
stores values of [0, 2, 4], corresponding to the distances to
the white, black, and gray colored zones. The distance be-
tween this node and the node in the extreme lower-right is
445=09.

For the Girvan-Newman algorithm, we use NSI-guided
best-first search to approximate edge betweenness cen-
trality, a technique demonstrated by Rattigan et al.
(2006). This method estimates betweenness by sam-
pling pairs of nodes and performing searches between
them. As seen in Figure 6, to determine the edge with
the highest betweenness score (rather than a rank or-
der of all the edges), it is only necessary to sample
a very small number of pairs. Additionally, we can
use the index constructed on the entire graph to per-
form searches throughout the clustering process rather
than building indices on the individual connected com-
ponents. Whereas the Girvan-Newman algorithm re-
quires O(|E|?|V|), our NSI-based version takes only
O(B)).

4. Results
4.1. Synthetic data sets

We evaluated the NSI-based version of graph k-
medoids in the same manner as described in Section
2.2. Since the distances provided by the NSI are ap-
proximate, one may expect the clustering performance
of graph k-medoids to suffer. As shown in Figure
7, however, the NSI-based clustering actually outper-
forms the exact method, often by a sizable margin.
The effect is most pronounced in graphs with inter-
cluster linkage between 0.2 and 0.6. At higher levels,
the effect disappears, as these graphs have so few intra-
cluster links that the link structure no longer encap-
sulates communities. Even after applying the modal
reassignment post-processing, the DTZ clustering still
consistently outperforms graph k-medoids with exact
distances.

To understand the performance benefit, we must ex-
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Figure 5. Run time as a function of graph size for the
k-medoids algorithm for three methods of calculating
geodesic distances between nodes. The top line shows
bidirectional breadth-first search, which can become in-
tractable for even moderate-size graphs. The middle line
shows an optimal best first search, which represents a lower
bound on the run time for any search-based method. The
lower line shows an NSI-based method (DTZ with 10 di-
mensions, 20 zones).

amine the DTZ index more closely. The annotations
contain the distances between each node and other sets
of nodes (zones). To estimate the distance between a
pair of nodes, the distance measure sums the distance
from one node to the other node’s zone and vice verse.
For example, consider the distance calculation from
node a; to node by, given an index with a single di-
mension. In this example, if a;1’s zone (A) consists of
nodes{ay,as,as}, and by’s zone (B) has {b1,b2}, we
have:

diStDTZ (al, bl) = diSt((M7 B) + diSt(bl, A)
= minl[dist(a, by), dist(a1, b2)] +
min[dist(bl, al), diSt(bl, CLQ), diSt(b1, Clg)]

Thus, for a single dimension, DTZ distance is guar-
anteed to underestimate actual graph distance. It fol-
lows that for multiple dimensions, distprz(ai,b;) <
2d x dist(ay, by). If there are many intra-cluster paths
between a given node and its true medoid, there is a
greater probability of having a smaller estimated dis-
tance to the medoid, resulting in a correct assignment.
Lowering the value of z (the number of random parti-
tions) effectively increases the effect of underestimat-
ing graph distance since each zone will contain more
nodes (i.e., the number of terms in the minimization
above increases). There is a tradeoff, though: Too
low a z and nodes will appear to be closer to many
medoids; too high a z, and DTZ distance estimates will
approach exact graph distance. Figure 8 depicts the
performance effects of choosing different settings for
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Figure 6. Effectiveness of a sampled betweenness cenrality
measure at identifying the top-ranked edge. The average
actual rank (out of 10,000) of the estimated top-ranked
edge is depicted as a function of the number of pairs sam-
pled. Highly-ranked edges are correctly identified with only
a few hundred pairs of nodes, as opposed to the million uti-
lized by the exact measure.
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Figure 7. Graph k-medoids performance using exact and
DTZ-based distances. The NSI consists of 20 zones and
10 dimensions (larger values of z and d slightly increases
performance).

these parameters on graphs with 100 clusters of size 10
and intercluster linkage of 0.2. Similar experiments on
graphs with larger clusters produced less easily inter-
preted results, including non-monotonic performance
increases as values of z and d increase. The effects of
NSI parameters on performance remains an important
area for future work. Furthermore, if the graph con-
tains “noisy” edges, the estimates provided by the NSI
can serve to smooth over anomalous links, producing
more stable clusterings.

It is important to note that the DTZ performance
improvement is not due to random estimation error
alone. Figure 9 illustrates this fact by depicting the
intra-cluster accuracy of a version of graph k-medoids
that utilizes a distance function whose outputs have
been perturbed with varying levels of Gaussian noise.
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Figure 8. Parameter exploration of the k-medoids algo-
rithm

As the level of noise increases, performance worsens,
even if the perturbations are restricted to underesti-
mate graph distance (reflecting the approximate na-
ture of DTZ). Clearly, the performance-enhancing er-
rors of DTZ’s distance measures are correlated with
graph structure rather than entirely stochastic.
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Figure 9. The effect of random distance perturbations on
graph k-medoids clustering performance. Distance estima-
tion error that is generated randomly greatly decreases ac-
curacy. This contrasts with the accuracy-enhancing error
associated with DTZ depicted in Figure 7.

As with graph k-medoids, the NSI-based version of the
Girvan-Newman algorithm performs extremely well.
Figure 10 depicts pairwise intra-cluster accuracy over a
range of graph types. The accuracy value stays above
0.8 for graphs with inter-cluster linkage up to 0.4. The
accuracy drops off as the structural separation be-
tween clusters starts to lessen. Like graph k-medoids,
the inter-cluster accuracy remains over 0.95 across the
range. Here MRA increases the performance some-
what, though not as dramatically as before. While this
method returns more accurate clusterings than graph
k-medoids, it comes at a significant cost, as on average
its run time was several orders of magnitude larger for
moderate-size graphs.
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Figure 10. Girvan-Newman clustering performance with a
DTZ NSI of 50 zones, 10 dimensions. MRA improves the
accuracy slightly and is most pronounced at higher levels
of inter-cluster linkage.

4.2. Real data sets

We tested k-medoids on two real relational data sets
(the slower Girvan-Newman algorithm was not run on
these datasets for perforamance reasons). The first
was a network of over 16,000 actors drawn from the In-
ternet Movie Database (http://www.imdb.com). Ac-
tors are connected by links when they have acted to-
gether in at least two films or television shows pro-
duced between 1970 and 2000. Using graph k-medoids
with a DTZ NSI, the algorithm consistently coverged
in less than five iterations for £ = 300 clusters. Table 1
below shows three examples of well-formed actor com-
munities. The leftmost group consists of actors from
the various Star Trek movies and television series. The
middle group is composed of players from the televi-
sion series Saturday Night Live, while the third group
represents actors from various Kevin Smith films.

Table 1. Three example clusters of actors discovered by k-
medoids: the Kevin Smith, Star Trek, and Saturday Night
Live clusters. These examples rank 19th, 40th, and 54th,
repectively, out of 300 when ranked by inter-cluster link-
age. The actors in boldface were selected to be the cluster
medoids.

Frakes, Jonathan
Shatner, William
Warner, David
Dorn, Michael
Spiner, Brent
Stewart, Patrick
Schuck, John
Nimoy, Leonard
Doohan, James
Koenig, Walter
Overton, Rick
Takei, George

Lovitz, Jon
Sandler, Adam
Schneider, Rob
Farley, Chris
Covert, Allen
Macdonald, Norm
Farley, John
Nealon, Kevin
Dante, Peter
Clark, Blake
Smigel, Robert
Titone, Jackie

Adams, Joey Lauren
Affleck, Ben
Ewell, Dwight
Lee, Jason
Damon, Matt
Suplee, Ethan
Smith, Kevin
Mewes, Jason
Flanagan, Walter
Rock, Chris
OHalloran, Brian
Mosier, Scott

The second domain we examined was a citation net-
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work generated by the Cora project (McCallum et al.,
1999). In the Cora dataset, the nodes of the graph rep-
resent over 30,000 scientific papers, connected by over
130,000 links. Two papers are connected by a link if
one cites the other. In addition, each paper is assigned
to one of 71 topics learned from the text of their titles
and abstracts. Using graph k-medoids, we attempted
to recover the topic groups by clustering the papers us-
ing their link structure. A visual representation of the
relationships between topic groups and clusters can be
seen in Figure 11. To evaluate our clustering, we ran
Pearson’s Chi-squared test on the predicted clusters
and their associated topic distribution.

topic
30 40 50 60 70

20

Figure 11. Visual representation of the relationship be-
tween cora topic groups and the predicted clusters
procuced by graph k-medoids. The dots are sized relative
to the number of papers for each topic in each cluster. The
lack of rows or columns with more than one dominant cir-
cle indicates highly correlated relationships between topics
and clusters, and 31% of the mass of the total topic distri-
bution lies on the diagonal.

5. Related work

Graph clustering has been studied in numerous sci-
entific communities, ranging from physics (Newman,
2004b) to social networking analysis (Freeman, 1979)
to computer science (Flake et al., 2004). Newman
(2004) provides an excellent overview of some of the
most well known techniques for clustering graphs.
Most approaches fall into one of several algorithmic
categories, detailed below.

The procedures in the first set follow the agglomera-
tive clustering paradigm. For these algorithms, each
node starts off in its own cluster, which are then com-
bind in a principled manner until the desired num-
ber of clusters is achieved, or the threshold for some
graph measurement is reached. Among these meth-
ods are Newman’s algorithm (Newman, 2004b). King

presents a cost-based algorithm for assembling a clus-
tering via agglomerative (or divisive) movement of
nodes between clusters (King, 2004).

The second main group of graph clustering algorithms
relies on edge removal to achieve a clustering among
the connected components of the graph. The Girvan-
Newman technique (and our approximation of it) fall
into this category. Van Dongen (2004) presents an
edge removal algorithm that is based on network flow
simulation. Flake, Tarjan, and Tsioutsiouliklis (2004)
present an algorithm based on finding the minimum
cut tree of a graph. While these methods yield encour-
aging results, they are not scalable to large graphs.

There is also a great deal of literature on spectral
methods, such as those outlined by Ng (Ng et al.,
). For these techniques, eigenvectors are calculated
for the Laplacian of the graph adjacency matrix. The
nodes of the graph are then clustered by performing
traditional data clustering on the eigenvectors. Re-
lated are methods that project link structure into some
vector space (rather than using eigenvectors); exam-
ples include Huang, Dhillon, and Handcock (Huang
& Lai, 2006) (Dhillon et al., 2004) (Handcock et al.,
2005). While these methods produce accurate re-
sults, they can be computationally infeasible for large
graphs.

As far as we know, the k-medoids algorithm has not
been applied in a graph clustering context. Hlaoui &
Wang and Schenker et al. present a version of k-means
for graphs; however, in their domain the data consist of
IID subgraphs that must be clustered together, rather
than individual nodes in the same graph (Hlaoui &
Shengrui, 2004), (Schenker et al., 2003).

6. Conclusions and future work

In spite of their simplicity, the graph k-medoids and
Girvan-Newman algorithms are surprisingly effective
at clustering graphs. Unfortunately, their compu-
tational complexities are prohibitively large for even
moderately sized graphs. We have shown how a net-
work structure index can be utilized within these al-
gorithmic frameworks to overcome these limitations,
achieving equal or better performance results.

There are several future research directions for the
current work on NSI-based graph clustering methods.
While we found the DTZ NSI to be effective at finding
clusters, there is certainly room for improvement in
terms of the time and space required to calculate and
store the index. Additionally, an NSI for weighted
graphs could perhaps improve the clustering perfor-
mance on highly-connected domains such as the IMDb
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actor graph. The NSIs utilized by graph k-medoids are
multipurpose; that is, the same index can be used to
effectively estimate centrality measures. It is possible
that a more specialized type of index, tailored to the
clustering task, could produce better results.

In addition to a defined link structure, many relational
data sets contain attribute information on the links
and objects. Another direction for this work is to
adapt it to domains with attributes, and devise a prin-
cipled way to incorporate them into graph k-medoids.
Finally, our work entirely ignored the issue of choosing
the proper number of clusters, when applying the algo-
rithms. It may be possible to use NSI-based measures
to choose k in a principled manner.
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