
Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

Nizar Grira grira@nii.ac.jp
Michael E.Houle meh@nii.ac.jp

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract

Although each iteration of the popular k-
Means clustering heuristic scales well to
larger problem sizes, it often requires an
unacceptably-high number of iterations to
converge to a solution. This paper intro-
duces an enhancement of k-Means in which
local search is used to accelerate convergence
without greatly increasing the average com-
putational cost of the iterations. The local
search involves a carefully-controlled number
of swap operations resembling those of the
more robust k-Medoids clustering heuris-
tic. We show empirically that the proposed
method improves convergence results when
compared to standard k-Means.

1. Introduction

The data clustering problem arises in a wide variety
of fields, including data mining, pattern recognition,
computer vision, and bioinformatics. In general, meth-
ods for clustering aim to organize a collection of data
items into groups (the clusters), so as to obtain the
highest possible association among items sharing the
same group, and the greatest possible differentiation
between items from different groups. Often, but not
always, the groupings sought are disjoint, with each
item assigned to exactly one cluster. The degree of
association is typically expressed in terms of a similar-
ity measure between pairs of items, chosen according
to the purpose of the application, to domain-specific
assumptions and to prior knowledge of the problem.
Unlike classification, which requires a learning phase
with respect to a user-supplied training set, cluster-
ing is regarded as a form of unsupervised learning, and
is usually performed when little or no information is
available concerning the membership of data items to

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

predefined classes. The uses of clustering are exten-
sive, and are supported by detailed surveys in the lit-
erature of many research communities (Jain & Dubes,
1988; Duda et al., 2001; Fukunaga, 1990).

Of the various clustering methods proposed to date,
most can be categorized into one of two main styles:
partitional or hierarchical (agglomerative). Hierarchi-
cal methods typically form clusterings in a bottom-
up manner, building up larger groups by progres-
sively merging smaller groups according to some lo-
cal similarity-based linkage criterion. Generally speak-
ing, hierarchical algorithms are static in the sense that
the assignment of items to clusters cannot be revis-
ited and refined, with subsequent membership changes
arising solely from the merge process. The hierarchi-
cal approach is a particularly popular choice for appli-
cations involving geographic data, and in other low-
dimensional spatial settings where it is meaningful to
unify two aggregations of data if a substantial portion
of both are in close proximity to one another. In more
general settings, however, commonly-used merge cri-
teria can result in clusters of very poor quality, whose
elements are related only by long chains of association.

Top-down approaches to clustering are also possible.
Instead of composing groups from subgroups shar-
ing common characteristics, the partitional clustering
style can be viewed as one of splitting a heterogenous
data set into smaller, more homogeneous subgroups.
The clustering typically proceeds in an iterative fash-
ion, with items continually being reassigned to groups
in an attempt to optimize some global quality crite-
rion. In general, only an approximate solution can
be obtained, since the number of possible partitions of
the data grows super-exponentially with the number of
items. In essence, the membership reassignment pro-
cess constitutes a local search heuristic over the space
of all possible data partitions.

The most famous example of a partitional clustering
algorithm, widely used in practice, is the k-Means
heuristic (McQueen, 1967). k-Means produces a par-
tition of the data set by assigning each item to a pro-

Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

totype (representative point) within the data domain.
For each cluster, prototypes are contructed by com-
puting the centroid (also referred to as the mean or
the center of mass) of its members. Items are then
reassigned to centroids so as to minimize a global sta-
tistical homogeneity criterion over the set of clusters,
typically the sum of squared Euclidean distances from
each item to its representative. Each iteration (par-
tition followed by reassignment) can be performed in
time linear in the number of data items. k-Means
can be viewed as an Expectation Maximization (EM)
heuristic for the case where the data is assumed to
follow a mixture of gaussian distributions (Dempster
et al., 1977). The popularity of k-Means in practice
is largely due to its ease of implementation, and its rel-
ative efficiency. The importance of k-Means heuris-
tics has been shown through extensive experimenta-
tion conducted over the past three decades (Dubes &
Jain, 1976; Chen et al., 2004). However, as we shall
later see, k-Means has a number of serious deficien-
cies that limit its effectiveness, despite its advantages
in speed.

A close variant of k-Means is the k-Medoids heuris-
tic, which adopts the restriction that all cluster repre-
sentatives coincide with items of the data set (Kauf-
man & Rousseeuw, 1990). The use of medoids (items
of the data set) as representives rather than centroids
(points in the data domain) results in robustness in the
statistical sense, in that medoid solutions are less sensi-
tive to small changes in the composition of the data set
— and by extension, less sensitive to noise and outliers.
They also have the advantage of interprebility, in that
each cluster representative is an instantiated example
drawn from its membership. However, despite these
advantages, medoid-based heuristics have not gained
wide acceptance in practice due to their prohibitive
cost, as a quadratic number of distance calculations
are generally required for convergence.

The remainder of this paper is organized as follows.
We first begin by formally describing two variant k-
Means heuristics, and then prove that one of these,
local-search k-Means, provides a constant-factor ap-
proximation of the cost of the optimal solution. We
continue by introducing a hybrid centroid-medoid clus-
tering heuristic that combines the best features of both
k-Means and k-Medoids. In Section 5, we present
the results of experiments showing the effectiveness of
our proposed method. Concluding remarks appear in
Section 6.

2. Background

Given a set X ⊂ Rd consisting of n data items
and integer k ∈ N≥2, we aim to find a partition
C = {C1, C2, . . . , Ck} of k disjoint non-empty clusters
minimizing the squared-error distortion cost function:

Ψ(C) =
k∑

i=1

∑
x∈Ci

‖x− µ(Ci)‖2, (1)

where ‖·‖ denotes the Euclidean distance and µ(Ci) =
1

|Ci|
∑

x∈Ci
x is the center of mass of the subset Ci.

The k-means problem as stated above is NP-hard —
no known algorithm is guaranteed to find the optimum
in polynomial time, and thus a heuristic approach is
needed. However, it is known that the optimal parti-
tion is a centroidal Voronoi tessellation (CVT) on the
set of sites {µ(Ci) | 1 ≤ i ≤ k}, with the items of Ci

all lying in the Voronoi cell of µ(Ci) (Du et al., 1999).

2.1. Batch k-Means heuristic

The batch k-Means method alternates between a
maximization step in which items are assigned to their
closest prototypes, and an expectation step where the
prototypes are replaced by the centroids of the items
that have been assigned to them. These two steps
form what we call a single run, and are iterated until
a convergence criterion is met — typically, until the
run produces no significant change in the value of the
cost function.

Algorithm 1 Batch k-Means heuristic
Initialization: Randomly generate a set P = {pi |
1 ≤ i ≤ k} of k initial prototype points.
repeat

Step 1 (maximization): Assign the data items to
their closest prototypes to form the clusters Ci =
{x ∈ X | ∀j < i, ‖x − pi‖ < ‖x − pj‖ and ∀j ≥
i, ‖x− pi‖ ≤ ‖x− pj‖}.
Step 2 (expectation): Replace the prototype pi by
the center of mass of its cluster, µ(Ci).

until convergence

The batch k-means algorithm has been widely adopted
due to its simplicity and ease of implementation.
Moreover, its time complexity of O(tknd), where t is
the number of iterations required for convergence, is
often taken to be linear in the size of the input when
t, k, and d are all significantly smaller than n. How-
ever, this assumption is not always correct, especially
in regard to the number of iterations t.

Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

2.2. Local search k-Means

The local search technique employed by the k-
Medoids heuristic can also be applied to the case
where the prototypes are not necessarily members of
the data set, leading us to a local-search variant of
k-Means.

Let F ⊂ Rd be a set of prototype candidates, with
|F| > k. The local search k-Means heuristic attempts
to find the set of prototypes F∗ ⊂ F of size |F∗| =
k that collectively minimize the cost function. The
algorithm proceeds by iteratively swapping candidates
into a set of tentative prototypes. The procedure can
be described in terms of:

• a set FS of all subsets consisting of exactly k pro-
totypes of F ;

• a distortion cost function Π : FS → R;

• a swap neighborhood structure N : FS → 2FS ,
where for any S ∈ FS, its swap neighborhood
N (S) consists of all sets S′ ∈ FS differing from
S by a single prototype — that is, such that |S′∩
S| = k − 1.

We say that a solution S of FS is locally optimal if
Π(S) ≤ Π(S′) for any subset S′ ∈ N (S).

Algorithm 2 Local search k-Means heuristic
Initialize S to hold k prototypes arbitrarily chosen
from the set F .
while ∃ S′ ∈ N (S) such that Π(S′) < Π(S), do

Arbitrarily choose some candidate set S∗ ∈ N (S)
satisfying Π(S∗) < Π(S).
S ← S∗.

end while

Clearly, the performance of local-search k-Means
strongly depends on the choice of the set of candidate
centers F . Moreover, even though the local-search
variant can immediately take advantage of an improv-
ing swap, the total computation time involved in eval-
uating swaps is still significant. Like k-Medoids, the
local-search variant of k-Means also suffers from a
convergence time that is quadratic in the number of
items of the data set. However, it turns out that the
cost of the solution obtained never exceeds that of the
optimal solution by more than a constant factor.

3. Analysis of local search k-Means

In this section, we prove the following theorem on
the quality of the solutions found by local search k-
Means. The initial stages of this proof resemble the

analysis of the k-Medoids cost due to (Arya et al.,
2001).

Theorem 1. Let S ∈ FS be a locally optimum solu-
tion for local search k-Means under the least squared
error criterion of Equation (1). Let O denote the op-
timal solution. Then Ψ(S) ≤ 25Ψ(O).

From the definition of local optimality, we immediately
observe that

Ψ(S ∪ {o} \ {s}) ≥ Ψ(S) ∀s ∈ S, o ∈ O (2)

Given a prototype s ∈ S, the set of data items con-
tained in the Voronoi cell of s in the CVT of S will be
denoted by V(s). Similarly, for o ∈ O, the items in the
Voronoi cell of o in the CVT of O will be denoted by
Vopt(o).

As in (Arya et al., 2001), we consider that a locally-
optimal center s ∈ S captures an optimal center o ∈ O
if |V(s)∩Vopt(o)| > 1

2 |Vopt(o)|; that is, if V(s) contains
more than half the data items belonging to Vopt(o). It
follows that a locally-optimal center can capture any
number λ ∈ {1, . . . , k} of optimal centers, whereas an
optimal center can be captured by at most one locally-
optimal center.

For the analysis, we will consider the effect on the cost
if a locally-optimal center s ∈ S were to be swapped
with an optimal center o ∈ O. Let us consider the set
E consisting of all possible candidate swap pairs of the
form (s, o), with s ∈ S and o ∈ O. For the analysis,
we will restrict our attention to any maximal subset
E′ ⊆ E satisfying the following conditions:

• If s captures exactly one optimal center o ∈ O,
then (s, o) ∈ E′.

• If s captures more than one optimal center, then
s does not contribute to any pairs in E′.

• If s captures no optimal centers, then s con-
tributes to at most two pairs in E′.

Since E′ is assumed to be maximal subject to these
conditions, it is not difficult to verify that the following
also hold:

1. Each optimal center o must be paired with exactly
one locally-optimal center s.

2. Each locally-optimal center s can be paired with
at most two optimal centers.

3. For every pair (s, o) ∈ E′, s does not capture any
other optimal center o′
= o.

Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

By simply rewriting Inequality (2), we can obtain an
upper bound on the the cost change after the swap
S ← S ∪ {o} \ {s}, for any arbitrary choice of s ∈ S
and o ∈ O:

Ψ(S ∪ {o} \ {s})−Ψ(S) ≥ 0.

For any center c ∈ S ∪ {o} \ {s}, let Vs→o(c) denote
set of data items contained in the Voronoi cell of c
with respect to the CVT of S ∪ {o} \ {s}. After the
swap, the points assigned to o will simply be those that
are contained in the new cell Vs→o(o). The cost will
change by the amount∑

x∈Vs→o(o)

(‖x− o‖2 − ‖x− sx‖2),

where sx denotes the closest locally-optimal center to
x in S. The items lying in V(s) \ Vs→o(o) will be
reassigned to other centers as a result of the swap.

Let ox denote the closest optimal center to
x ∈ V(s) \ Vs→o(o).

• If ox = o, then x will be reassigned to some other
locally-optimal center s′x ∈ S. Since x /∈ Vs→o(o),
we have ‖x− s′x‖ ≤ ‖x− ox‖.

• Otherwise, if ox
= o, then due to the third condi-
tion stated above, we know that s does not cap-
ture ox. Therefore, x will be assigned to another
locally-optimal center s′x ∈ S.

We now analyze the impact of swaps on the cost. From
this point onward, the proof strategy diverges from
that of the k-Medoids analysis of (Arya et al., 2001).

If we denote by sox
the closest locally-optimal center to

ox in S∪{o}\{s}, then the cost change relative to the
reassignment of point x ∈ V(s) \ Vs→o(o) is bounded
by ‖x− sox

‖. That is,

‖x− s′x‖ ≤ ‖x− sox
‖ ∀ x ∈ V(s) \ Vs→o(o).

The cost change is thus

Λ =
∑

x∈V(s)\Vs→o(o)

(‖x− s′x‖2 − ‖x− s‖2)

≤
∑

x∈V(s)\Vs→o(o)

(‖x− sox
‖2 − ‖x− s‖2). (3)

Hence, the total cost change for a single swap is:

Ψ(S ∪ {o} \ {s})−Ψ(S)

=
∑

x∈Vs→o(o)

(‖x− o‖2 − ‖x− sx‖2)

+
∑

x∈V(s)\Vs→o(o)

(‖x− s′x‖2 − ‖x− s‖2) ≥ 0

Using Inequality (3), we obtain:

0 ≤
∑

x∈Vs→o(o)

(‖x− o‖2 − ‖x− sx‖2) (4)

+
∑

x∈V(s)\Vs→o(o)

(‖x− sox
‖2 − ‖x− s‖2)

Since s is the closest locally-optimal center to x in S,
we can further expand the second term on the right of
the inequality by adding the positive quantities ‖x −
sox
‖2 − ‖x − s‖2 for all x ∈ V(s) ∩ Vs→o(o). Thus,

Inequality (4) implies that

0 ≤
∑

x∈Vs→o(o)

(‖x− o‖2 − ‖x− sx‖2)

+
∑

x∈V(s)

(‖x− sox
‖2 − ‖x− s‖2)

Next, we shall derive a bound on the total cost change
over all pairs in E′. Recall the conditions that apply to
these pairs — namely, that each locally-optimal center
contributes to at most two pairs, and that each opti-
mal center appears in exactly one pair. We therefore
obtain:

0 ≤
∑

(s,o)∈E′

∑
x∈Vs→o(o)

(‖x− o‖2 − ‖x− sx‖2)

+
∑

x∈V(s)

(‖x− sox
‖2 − ‖x− s‖2)

≤
∑
x∈X

(‖x− ox‖2 − ‖x− sx‖2)

+ 2
∑
x∈X

(‖x− sox
‖2 − ‖x− sx‖2)

≤ Ψ(O)− 3 Ψ(S) + 2
∑
x∈X

‖x− sox
‖2. (5)

This leaves us with a bound independent of the actual
choice of E′. To bound

∑
x∈X ‖x − sox

‖2, we require
the following technical lemma:
Lemma 1. Let I be any set of items, and let µ be
its centroid. Then the sum of squared Euclidean dis-
tances from the items of I to any point µ′ is at most∑

x∈I ‖x− µ‖2 + |I| · ‖µ′ − µ‖2.

Proof. Omitted in this version.

Using this lemma, we obtain:∑
x∈X

‖x− sox)‖2

≤
∑
o∈O

⎛
⎝ ∑

x∈Vopt(o)

‖x− o‖2 + |Vopt(o)| · ‖o− sox
‖2
⎞
⎠

=
∑
o∈O

∑
x∈Vopt(o)

(‖x− o‖2 + ‖o− sox
‖2) .

Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

Observing that ∀x ∈ X, ‖o−sox
‖ ≤ ‖o−sx‖, it follows

that:∑
x∈X

‖x− sox
‖2

≤
∑
x∈X

(‖x− ox‖2 + ‖ox − sx‖2
)

≤ Ψ(O) +
∑
x∈X

(‖x− ox‖+ ‖x− sx‖)2

= 2Ψ(O) + Ψ(S) + 2
∑
x∈X

‖x− ox‖ · ‖x− sx‖.

Using the Cauchy-Schwartz Inequality, we then obtain:∑
x∈X

‖x− ox‖ · ‖x− sx‖

≤
(∑

x∈X

‖x− ox‖2
) 1

2
(∑

x∈X

‖x− sx‖2
) 1

2

from which it follows that∑
x∈X

‖x− sox
‖2 ≤ 2Ψ(O) + Ψ(S) + 2Ψ(O)

1
2 Ψ(S)

1
2 .

Combining the above with Inequality (5):

0 ≤ Ψ(O)− 3Ψ(S)

+2(2Ψ(O) + Ψ(S) + 2Ψ(O)
1
2 Ψ(S)

1
2)

≤
(
5Ψ(O)

1
2 −Ψ(S)

1
2

)(
Ψ(O)

1
2 + Ψ(S)

1
2

)
.

Both factors must be non-negative, leading to the fol-
lowing bound, as required:

Ψ(S) ≤ 25Ψ(O).

The theorem implies that the local search k-Means
heuristic is a (25 + ε)-approximation of the optimal k-
Means solution, the ε > 0 term arising from the choice
of centers from among a discrete set of candidates F
rather than from the entire space. For a sufficiently
dense choice of F , the value of ε can be driven arbi-
trarily close to zero.

4. Hybrid centroid-medoid algorithm

In this section, we present the details of our pro-
posed hybrid centroid-medoid clustering heuristic. In-
tuitively speaking, it seeks to boost the performance
of batch k-Means by occasionally considering local-
search swap operations, so as to avoid being trapped
at solutions in which some clusters are overrepresented
by prototypes while others are unrepresented. The hy-
brid algorithm, shown as Algorithm 3, starts by run-
ning batch k-Means with a randomly-chosen initial

centroids pi ∈ P

medoid candidates c ∈ F

Figure 1. Illustration of the hybrid centroid-medoid
method. Upper left: after convergence of the centroid
phase; upper right: an improving medoid swap; lower left:
the medoid is accepted as a new prototype; lower right:
the result of the next centroid phase.

set of k prototype centers. After a predetermined num-
ber of runs r ≥ 1, we obtain a set of k centroids P .
Next, we attempt to swap a single candidate centroid
of P with medoids selected from a set of candidates
M ⊆ X of size sk, for some integer s ≥ 1 — the pre-
cise strategy for generatingM will be described later.
Then, if a swap is discovered that would lead to an im-
provement in the cost value, the swap is immediately
performed. The algorithm would then reiterate the
process, alternating between r runs of batch k-Means
(the ‘centroid’ phase) and the search for a centroid-
medoid swap (the ‘medoid’ phase).

The trade-off between the improved convergence rate
and iteration time efficiency is governed by the choice
of parameters r and s. Choosing large values of
r causes the method to emulate batch k-Means,
whereas choosing a large value of s increases the time
cost of the medoid phase. Although it would seem bet-
ter to consider many candidate centroids for swapping
in the medoid phase, and to consider all items of X as
candidate medoids, this would lead to a prohibitively
high cost for this phase. Instead, we limit the cost of
a medoid phase to be of the same order as that of a
centroid phase, by carefully targeting a single centroid
most likely to lead to an improving swap, and using
sampling techniques to determine a small yet repre-
sentative collection of candidate medoids.

The candidate centroid for swapping is determined by
computing a closest pair among the current set of cen-

Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

troids, and then selecting one of the pair arbitrarily.
The rationale for this choice is illustrated in Figure 1.
Provided that k, the number of clusters sought, is
at least as large as the ‘true’ number of clusters of
data set X, any failure to discover a particular cluster
would imply that some other cluster has more than
one representative assigned to it. Especially in high-
dimensional contexts, this implies that the distance
between these two centroids is likely to be substan-
tially lower than the average inter-prototype distance.
Hence, if the candidate medoid setM contains at least
one item of an undiscovered cluster, relocating one of
the centroids to a medoid from the undiscovered clus-
ter should result in a decrease in the cost. Further
iterations of batch k-Means would then be required
so as to readjust the positions of the representatives
within the ‘donor’ cluster and the ‘recipient’ cluster.

Algorithm 3 Hybrid centroid-medoid heuristic
Initialization: randomly generate a set P = {pi |
1 ≤ i ≤ k} of k initial prototype points.
repeat

Update P by performing r runs of the batch k-
Means heuristic.
Determine a closest pair (p, q) of prototypes; that
is, prototypes p, q ∈ P such that p
= q and ‖p −
q‖ ≤ ‖p′ − q′| for any choice of p′, q′ ∈ P , where
p′
= q′.
Select a set of candidate medoids M ⊂ X of size
|M| = sk.
for each c ∈M do

if swapping p and c would decrease the distor-
tion cost then

Perform the swap P ← P ∪ {c} \ {p}.
Break from the inner loop.

end if
if swapping q and c would decrease the distor-
tion cost then

Perform the swap P ← P ∪ {c} \ {q}.
Break from the inner loop.

end if
end for

until convergence

The simplest way of selecting the candidate medoid
setM is via uniform random selection. However, this
has the effect of over-representing larger clusters in the
data set and missing smaller ones. Ideally, we would
prefer each cluster to provide roughly s items of M
regardless of its size. An appropriate alternative would
be to bias the sampling in order to promote selection
from smaller clusters, as we shall now describe.

4.1. Weighted random sampling

As a preprocessing step to the algorithm, we label each
data point x ∈ X using a coin-flipping procedure, as
follows. With equal probability 1

2 to each outcome
— ‘heads’ or ‘tails’ — a sequence of coin flips is per-
formed. The label ω(x) assigned to x is simply the
number of ‘heads’ obtained until the first outcome of
‘tails’. The labeling of X can be computed in linear
expected time, as a preprocessing step. It is easy to
see that the probability of x being labeled with label
l or greater is simply Pr(ω(x)≥l) = 1

2l .

The selection of M is performed as follows. Let
C = {Ci | 1 ≤ i ≤ k} be the clusters associated with
the current set of centroids P . For each Ci, we select
those members of x ∈ Ci satisfying ω(x) ≥ �log2

|Ci|
s �.

From the precomputed labeling, this selection can be
performed in time proportional to |Ci|.
For each cluster |Ci|, the expected number of items
selected can be seen to lie in the range s ≤ µi < 2s.
Although we can expect s or more items of Ci to be in-
cluded inM, the random selection process may result
in fewer than s candidates being generated, especially
when |Ci| is small. The probability of this occurring
can be estimated using standard Chernoff bound tech-
niques (Motwani & Raghavan, 1995). For simplicity
and efficiency, in our experimentation, we shall con-
sider the effect of setting s to be small constant values,
without explicitly bounding the probability of error.

5. Experimental Evaluation

In this section, we evaluate the performance of the
centroid-medoid algorithm against that of batch k-
Means and k-Medoids, as well as against two re-
cent methods not based on k-Means: the constant-
approximation heirarchical clustering heuristic of Das-
Gupta and Long (DasGupta & Long, 2005), and the
affinity propagation method of Frey and Dueck (Frey
& Dueck, 2007).

DasGupta and Long’s method initially constructs a
spanning tree of the data set by means of a farthest-
first traversal, in quadratic time. It then groups the
items into ‘levels of granularity’ ordered according to
the distances by which the items were connected into
the spanning tree. A cluster hierarchy (cluster tree)
is then formed by reconnecting each item of the span-
ning tree to the closest node taken from levels of higher
granularity (shorter distances), thereby reducing over-
all connection distances and improving the compact-
ness of the resulting clusters. Theoretically, if the cost
of a clustering is taken to be the largest radius of
its clusters, DasGupta and Long’s method generates

Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

a clustering with cost at most 8 times greater than the
optimal. It should be noted that their ‘minimax’ cost
function is more sensitive to outlier points than the
sum-of-squares function used by k-Means, and that
it is based on (unsquared) Euclidean distance rather
than squares of distances. In practice, their method re-
lies on parameters that control the numbers and sizes
of the levels of granularity. In our experimentation,
we report only the results using the default values rec-
ommended in their paper — varying them had little
effect on the execution time or clustering quality.

Frey and Dueck’s affinity propagation method for k-
clustering takes as input a collection of real-valued
similarities between data points, and iteratively prop-
agates this information between neighboring items in
an attempt to identify high-quality representatives in
every local vicinity. The negotiation is mediated by
real-valued messages between data points and poten-
tial representatives that are used to promote or in-
hibit the choice of representatives, and the assign-
ment of points to representatives, so as to minimize
an appropriately-chosen energy function. The affinity
propogation method does not accept a desired num-
ber of clusters k. Instead, the number of clusters pro-
duced depends on a set of ‘preference values’, supplied
by the user for each item, that expresses the relative
suitability of the items for selection as a representa-
tive. Also, when the similarity is based on distance
values, all pairwise distances must be precomputed, a
prohibitive cost when the data set size is large.

The experimental comparison was performed on a
dataset consisting of 1440 images grouped in 20 clus-
ters, selected from the COIL-100 database (Nene et al.,
1996). Each cluster contains 72 different views of the
same physical object. The global image features used
for the image database are described in (Boujemaa
et al., 2001). The signature vector corresponding to
each image has 120 dimensions. The clusterings were
performed using the Euclidean distance metric, except
in the case of affinity propagation, for which the neg-
ative squared Euclidean distance was used.

Figure 2. A sample of the COIL image database.

One way to measure the partition quality with re-
gards to an underlying image database ground-truth is
to measure the normalized mutual information (NMI)
between true and predicted labels. If L̂ is the ran-

dom variable denoting the labels assigned by the al-
gorithm, and L the random variable corresponding to
the ground-truth labels, then the normalized mutual
information NMI is the quantity

NMI = 2
H(L)−H(L|L̂)
H(L) + H(L̂)

where H(L), H(L̂) are the marginal entropies of L
and L̂, and H(L|L̂) is the conditional entropy. Sim-
ply stated, the NMI corresponds to the amount of in-
formation that knowing either variable provides about
the other.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14

O
bj

ec
tiv

e
F

un
ct

io
n

Iterations (runs)

standard (1.82s)
hybrid-1 (25.75s)
hybrid-3 (12.92s)

hybrid-5 (6.14s)
hybrid-7 (4.141s)

Figure 3. The hybrid algorithm achieves lower costs than
batch k-Means, for s = 2 and r = 1, 3, 5, 7.

NMI Time (s) #C
k-Means 0.759 1.28 20
Hybrid (r = 3, s = 2) 0.899 12.92 20
Hybrid (r = 3, s = 10) 0.893 52.02 20
k-Medoids 0.907 352.08 20
DasGupta-Long 0.850 23.56 20
AP (prefs = −0.5) 0.866 59.53 55
AP (prefs = −3.9) 0.923 55.39 20

Table 1. The normalized mutual information for cluster-
ings produced by batch k-Means, the hybrid algorithm
with r = 3, k-Medoids, DasGupta & Long’s, and affin-
ity propagation, with the corresponding execution times in
seconds, and number of clusters.

The results of the experiments are shown in Table 5.
For affinity propagation, we show the results for two
choices of the preference values, one where values are
set uniformly to the median similarity score (−0.5),
and the other (−3.9) determined — after much trial
and error — so as to produce the desired number of
clusters, 20. The best NMI scores were achieved with

Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic

affinity propagation, although the execution times
were higher than all but k-Medoids due to the ex-
plicit computation of all pairwise distances. DasGupta
and Long’s farthest-first traversal method was outper-
formed in both execution time and clustering quality
by the hybrid algorithm (with s = 2).

When comparing k-Means, k-Medoids, and the hy-
brid method, we can see that evaluating even a very
small number s of candidate medoids per cluster can
lead to a significant improvement over batch k-Means,
at speeds substantially faster than k-Medoids. Fig-
ure 3 presents the dependence between the cost of so-
lutions and the number of iterations for both batch
k-means and the proposed hybrid algorithm, when s
is fixed to be 2 and r is chosen to be one of 1, 3, 5
or 7. Once again, the hybrid algorithm outperforms
batch k-Means by improving further upon the final
solution cost of k-Means, and thus obtaining a bet-
ter optimum approximation. Figure 3 also shows the
associate times for convergence. Decreasing the num-
ber of runs in the centroid phase k-means iterations
improves the convergence rate at the expense of exe-
cution time — 4.14 seconds to convergence when the
centroid phase consists of 7 iterations, compared with
25.75 seconds when the centroid phase is limited to 1
iteration. Bearing this in mind, one should adjust the
two parameters s and r depending on the application
requirements.

6. Conclusion

In this paper we proposed a hybrid centroid-medoid
local-search method for improving the performance of
k-Means. We used a hierarchy of random samples
to take into account variable cluster sizes while select-
ing good candidate medoids, and showed experimen-
tally that the number of medoid swaps needed to reach
a significant improvement of the convergence point is
low. The simple hybridization allows for a competi-
tively low computational complexity, making our ap-
proach suitable for the same applications as standard
k-Means.

References

Arya, V., Garg, N., Khandekar, R., Munagala, K.,
& Pandit, V. (2001). Local search heuristic for k-
median and facility location problems. STOC ’01:
Proc. 33rd ACM Symposium on Theory of Comput-
ing (pp. 21–29). New York, NY, USA: ACM Press.

Boujemaa, N., Fauqueur, J., Ferecatu, M., Fleuret,
F., Gouet, V., Saux, B. L., & Sahbi, H. (2001).
Ikona: Interactive generic and specific image re-

trieval. Proc. International Workshop on Multi-
media Content-Based Indexing and Retrieval (MM-
CBIR’2001). Rocquencourt, France.

Chen, J.-S., Ching, R. K. H., & Lin, Y.-S. (2004). An
extended study of the k-means algorithm for data
clustering and its applications. J. Operational Re-
search Society, 55, 976–987.

DasGupta, S., & Long, P. M. (2005). Performance
guarantees for hierarchical clustering. J. Computer
and System Sciences, 70, 555–569.

Dempster, A., Laird, N., & Rubin, D. (1977). Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
Series B, 39, 1–38.

Du, Q., Faber, V., & Gunzburger, M. (1999). Cen-
troidal voronoi tessellations: Applications and algo-
rithms. SIAM Rev., 41, 637–676.

Dubes, R. C., & Jain, A. K. (1976). Clustering tech-
niques: The user’s dilemma. Pattern Recognition, 8,
247–260.

Duda, R., Hart, P., & Stork, D. (2001). Pattern clas-
sification. John Wiley & Sons.

Frey, B. J., & Dueck, D. (2007). Clustering by passing
messages between data points. Science, 315, 972–
976.

Fukunaga, K. (1990). Introduction to statistical pat-
tern recognition. Academic Press.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for
clustering data. Prentice-Hall, Inc.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding
groups in data: An introduction to cluster analysis.
New York, USA: John Wiley & Sons.

McQueen, J. (1967). Some methods for classification
and analysis of multivariate observations. Proc. 5th
Berkeley Symposium on Mathematical Statistics and
Probability (pp. 281–297).

Motwani, R., & Raghavan, P. (1995). Randomized al-
gorithms. New York, USA: Cambridge University
Press.

Nene, S. A., Nayar, S. K., & Murase, H. (1996).
Columbia object image library (Technical Report).
Department of Computer Science, Columbia Uni-
versity, http://www.cs.columbia.edu/CAVE/.

