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Abstract

A new hierarchical nonparametric Bayesian
model is proposed for the problem of multi-
task learning (MTL) with sequential data.
Sequential data are typically modeled with
a hidden Markov model (HMM), for which
one often must choose an appropriate model
structure (number of states) before learning.
Here we model sequential data from each
task with an infinite hidden Markov model
(iHMM), avoiding the problem of model se-
lection. The MTL for iHMMs is implemented
by imposing a nested Dirichlet process (nDP)
prior on the base distributions of the iHMMs.
The nDP-iHMM MTL method allows us to
perform task-level clustering and data-level
clustering simultaneously, with which the
learning for individual iHMMs is enhanced
and between-task similarities are learned.
Learning and inference for the nDP-iHMM
MTL are based on a Gibbs sampler. The ef-
fectiveness of the framework is demonstrated
using synthetic data as well as real music
data.

1. Introduction

Multi-task learning (MTL) (Caruana, 1997) has at-
tracted significant interest in the machine learning
community (Blei et al., 2004; Rasmussen, 2000; Thurn
& O’Sullivan, 1996; Xue et al., 2007) and has been suc-
cessfully applied to information retrieval (Blei et al.,
2004) and computer vision (Thurn & O’Sullivan,
1996). Recent research on MTL has exploited new
ideas in Bayesian hierarchical modeling (Gelman et al.,
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1995). In MTL, data from multiple tasks are learned
collectively and data are appropriately shared among
related tasks. Therefore the training data for each task
are strengthened and the overall learning performance
is improved. This is especially useful when there are
limited training data from each task.

While most work in hierarchical Bayesian modeling
addresses clustering multiple sets of data that are
exchangeable within tasks, little has been done to
solve the MTL problem for sequential data. Hidden
Markov models (HMMs) have been widely used to an-
alyze sequential data from a single source, address-
ing problems in speech recognition (Rabiner, 1989),
music analysis (Logan & Salomon, 2001) and multi-
aspect target detection (Runkle et al., 1999). In many
cases, one may have limited sequential data for train-
ing. Rather than building HMMs for each task sepa-
rately, it is preferable to identify relationships between
tasks and share information appropriately, thus ob-
taining more accurate task-dependent models.

In the context of sequential-data analysis using HMMs,
a key issue is to develop a methodology for finding the
appropriate model complexity, i.e., defining the appro-
priate number of states. However, the data may not
be represented by a single “correct” HMM structure,
i.e., a fixed number of states. Rather than performing
model selection (Stolcke & Omohundro, 1993) to se-
lect a fixed model structure, we employ a nonparamet-
ric Bayesian approach developed by Teh et al. (2006)
in which the number of states is not fixed a priori.
To address the problem of appropriately sharing data
between tasks we utilize the nested Dirichlet process
(nDP) (Rodriguez et al., 2006).

The nDP-iHMM introduced here represents a new hi-
erarchical nonparametric Bayesian model for multi-
task learning of sequential data. The sequential data

from each task is modeled with an infinite hidden
Markov model (i(HMM) and the iHMMs are shared
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by imposing an nDP prior on the base distributions of
the iHMMSs, leading to a general Bayesian learning al-
gorithm for simultaneous iHMM task-level clustering
and data-level modeling.

2. The Infinite Hidden Markov Model

Hidden Markov models (HMMs) have been widely
used for modeling sequential data. A data sequence
of length T' generated by an HMM yields a sequence
of observations o = {01,02,...,0r} and a sequence
of hidden underlying states s = {s1,s2,...,s7}, the
latter following a Markov process. Consider an HMM
with M states and C possible observations (we focus
on a discrete HMM here for simplicity, but generaliza-
tion to continuous HMMs is straightforward). The pa-
rameters of the model are (7, AM*M BMxC) " ith
m being the initial-state probability, A the transition
matrix of P(s¢|s;—1) and B the observation matrix of
P(Ot|8t).

The conventional inference methods for HMMs are the
expectation-maximization (EM) method implemented
via the Baum-Welch algorithm (Rabiner, 1989), and
the variational Bayesian method (Beal, 2003). How-
ever, in both methods the model structure must be
specified initially, i.e. the number of states is fixed.
Knowing the correct model complexity requires expen-
sive model selection and in some applications there
may exist no such fixed “correct” model (the limited
sequential data for a given problem may be best repre-
sented via an ensemble of HMMSs, with different num-
bers of states). We address this problem by using an
HMM with a countably infinite state space, namely
the infinite hidden Markov model (IHMM). Beal et al.
(2002) first proposed the iHMM and provided an ap-
proximate sampling scheme for inference. Teh et al.
(2006) demonstrated that the HDP can be used to re-
cast the iHMM and provided a useful sampling scheme.
Below we overview the HDP, and then describe how
the HDP may be employed to develop an iHMM.

2.1. Hierarchical Dirichlet Processes

The hierarchical Dirichlet process considers learning
problems of multiple related groups of data, with each
group described by an infinite mixture model, and the
mixture components are shared across groups. Con-
sider first a single group of observations {z1,---,zn},
with each z; generated from a distribution z; ~ F(6;).
The parameters 6; are in turn drawn from an un-
known mixture distribution G, which is assumed to
be drawn from a Dirichlet process (Ferguson, 1973)
G ~ DP(vy,H), where 7 is a positive real number
and H is the base distribution for G. Such a model

is known as a Dirichlet process mizture model (Esco-
bar & West, 1995) with the number of mixture com-
ponents unbounded and inferred automatically from
the data. Ferguson (1973) showed that samples drawn
from DP(v,H) are discrete with probability one, a
property made explicit by the stick-breaking construc-
tion (Sethuraman, 1994)

[e%s) k—1
G=> Puoo: Br=0[[0-5) B~ Beta(1,7),
k=1 =1

(1)

where 59; is a discrete measure concentrated at 0} and

05 “ogooA graphical representation of a DP mix-
ture model is given in Fig. 1(a). Indicator variable z;
denotes the mixture component generating the data
point z; ~ F(07 ), i.e., 6; = 0;.. The sharing arises
when several 6;’s use the same 6}.

Now consider J groups of data, denoted ((wﬂ)fvzjl)jzl
To construct an HDP, a global probability measure
Go ~ DP(v, H) is first drawn to define the base distri-
bution for each data group, and then G; ~ DP(«a, Go)
is sampled independently for each group. The dis-
creteness of Gy (as shown in (1)) guarantees that the
G;’s will reuse the same set of shared mixture com-
ponents defined in Gy but with different proportions
(Teh et al., 2006):

Go=> Bilo: G; =) wirdy: w;~DP(a,B),

k=1 k=1

(2)
where w; is an infinite-dimensional vector of proba-
bilities that sum to one almost surely. The HDP can
be used to model J groups of coupled infinite mix-
ture models. The graphical model of an HDP mixture
is shown in Fig. 1(b), where datum z;; in group j
is generated by first drawing 6;; ~ G, then sampling
xj; ~ F(0;;). Parameters {0} }7° ;| are the set of shared
mixture components drawn from Gy, and z;; is the in-
dicator variable for which 0;; = 67 .

2.2. Learning an iHMM via HDP

An M-state HMM can be regarded as a set of M cou-
pled finite mixture models (each with M shared mix-
ture components). Given the hidden state (random
variable) s;_; = j, the conditional distribution of the
next observation oy is

M
plodsi—1 =j) = Z ajibi(0t), 3)

where aj; = p(s; = i|s;—1 = j) is the probability of
choosing the it" state given s;_; and b;(+) is the i‘"
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Figure 1. (a) Graphical representation of a Dirichlet pro-
cess mixture model using (1). (b) Graphical representation
of a hierarchical Dirichlet process (HDP) mixture model
using (2).

state-dependent observation model. Thus the previous
state s;_1 indexes a specific row of the transition ma-
trix serving as the mixture weights for choosing current
state s¢;, and the state-dependent observation models
serve as the mixture components generating o;. Note
that the HMM involves a set of mixture models, one
for each possible visited state at time ¢ — 1. To deal
with an infinite number of states, it is natural to apply
a set of state-specific DPs, one for each value of the
states. Furthermore, these DPs must be shared be-
cause they use the same set of states and observation
models {b;(-)}$2,. This is similar to the HDP mixture
model but with a key distinction being that the datum
(observation) belongs to a random group (indexed by
the previous hidden state) in the iHMM rather than a
fixed group in the HDP.

The HDP construction of the iHMM is shown in Fig.
2, with parameters defined as

or | se, {0ptizy ~ F(0;,)  {0i}es, | H~H
s¢ | se—1, {wnnzy ~ Mult(ws,_,)
{wN}?LOZI | Oé,ﬁ ~ DP(OA,,@) /6 | 8 Sthk(V)a(Zl)

where w,, corresponds to the row of transition ma-
trix A, F(6) corresponds to the observation model
bi(-) and Stick(-) represents the stick-breaking weights
in (1). Each observation is represented with an L-
dimensional feature vector o; = [o},---,0F] and the
feature vector is assumed to be generated from a sig-
nal model F.

A single HDP is used to construct an iHMM for a single
task (one type of sequential data). If there are multiple
tasks, it has been suggested (Teh et al., 2006) that one
could put an additional level of the Bayesian hierarchy,
letting a master Dirichlet process couple each of the
iHMMs. While such a framework will allow sharing of
the parameters between the tasks, it does not explicitly
address the inter-relationships between the tasks, with
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Figure 2. The infinite hidden Markov model interpreted as
an HDP. For observation o, s;—1 defines the mixture model
to be used and s; selects the mixture component according
to infinite dimension weight vector ws,_, .

this the motivation of the nDP.

3. Multi-Task Learning with Infinite
Hidden Markov Models

Consider a learning problem in which we have sequen-
tial data collected from J different but possibly related
tasks, D = {O1,...,0;}, where O; = {0j1,...,0j7}
is the sequential data from task j. For example, each
O; may represent the observation sequence of features
extracted from the j** music clip. We here assume
a single sequence with fixed length T for each task
(music piece), but this is easily generalized to multiple
sequences with different observation lengths.

Our goal is to build accurate HMMs for each of the
tasks and also learn which tasks are similar (for ex-
ample, to learn which pieces of music are similar). A
naive way to learn the HMMs is to treat each task
separately. However since these tasks may be related,
and in some applications the sequential data are lim-
ited, the data from one task may potentially be useful
to help build the model for other tasks. On the other
hand, each task will likely have its own characteristics,
thus simply pooling them and learning a single HMM
is also inappropriate. We wish to exploit the shar-
ing structure between tasks appropriately and use the
shared information to enhance model learning. Fur-
thermore, we wish to do this in a setting for which the
problem of model selection (number of HMM states)
is avoided. Finally, learning the appropriate inter-task
sharing mechanisms is also of interest, because it gives
insight into the relationships between the sequential
tasks, with this important for information retrieval; for
example, one may wish to learn which musical pieces
are similar to one another.

We propose a new hierarchical nonparametric
Bayesian model for sequential-data MTL. At the bot-
tom level each task is modeled with an iHMM as de-
scribed in Sec. 2.2, and at the top level the data in the
tasks are shared appropriately by imposing a nested
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Dirichlet process (nDP) prior on the base distribu-
tions of the iHMMs, yielding the nDP-iHMM. There
are several appealing properties of the proposed model:
(i) the problem of selecting an appropriate number of
HMM states is avoided; (ii) the similarity measure-
ment between tasks is obtained directly; (iii) the state-
dependent observation models are shared among re-
lated tasks and model learning is improved; and (iv)
upon sharing, each task still maintains its own tran-
sition matrix, which can be used to distinguish the
tasks.

3.1. The Nested Dirichlet Process

The nested Dirichlet process (nDP) has been proposed
by Rodriguez et al. (2006) to perform intra-task and
inter-task clustering simultaneously (for the work pre-
sented here, the intra-task clustering is associated with
learning the iHMM state structure). Suppose xj;, for
i=1,...,Nj, are observations from data group j, for
7 =1,...,J. The observations are assumed exchange-
able within the group and drawn from a distribution
xj; ~ F(0j;). Parameter 6,; is drawn from G, and
all {G; }3]:1 are linked via an nDP. The mathematical
representation of the nDP mixture model is

xﬂ\eﬂwF(Gﬂ), Gji|Gj~Gj, ’i:l,...7Nj
ijzwkagz, j=1,...,J (5)
k=1

(oo}
P=> Bude:,, (6)
1=1
with 5, ~ H, B, ~ Stick(y) and 7w ~ Stick(n). The
collection {G1,...,G s}, used as the mixing distribu-
tion, is said to follow a mested Dirichlet process with
parameters 7, v and H, and is denoted nDP(n,~, H).

Equation (5) implies that the distribution G, is a stick-
breaking process, in which the atoms are themselves
stick-breaking processes drawn from DP(v, H). Since
P(G; = Gy) = ﬁ > 0, the model induces clus-
tering in the space of distributions. Also, the stick
breaking construction of G ensures that marginally,

G; ~ DP(~, H) for every j.

Rodriguez et al. (2006) showed that the prior cor-
relation between two distributions G; and Gy is
COI"(G]',G]‘/) = ﬁ = P(G] = Gj/). In addition,
the correlation between draws from the process can be
calculated from (5) and (6), yielding

1

e j=J
Cor(6;5,0;11r) = AR )
e { armar 77

The above indicates that the a prior: correlation be-
tween observations coming from the same group is

(04

iHMM for 1* task iHMM for J" task

Figure 3. The graphical representation of the nDP-iHMM.
The base distributions are shared via a nDP and the conse-
quent iHMMs are independently generated given the base
distribution.

larger than the correlation between observations com-
ing from different groups, which is an appealing fea-
ture. Therefore, the nDP model simultaneously en-
ables clustering the observations across groups as well
as clustering the distributions at the task level. This
is different from the HDP, in which only data-level
clustering across groups is considered (the task-level
clustering in the HDP may be implied indirectly).

3.2. The nDP-iHMM

While in the nDP exchangeable observations within
each task are assumed, in iHMM-based MTL we have
to consider sequential data for each task. In the nDP-
iHMM model, the distribution of each task is now re-
placed by an iHMM and those iHMMs share an nDP
prior. To be specific, the collection of base distribu-
tions {GY,...,GY%} for the iHMMs are drawn from an
nDP. A graphical model of the nDP-iHMM is shown
in Fig. 3.

Two tasks j and j’ share the same observation models
(mixture components defined in the base distribution)
if G = G?, = Gy, for some k. Note that even though
the base distribution Gg and G?, are identical, the con-
sequent iHMMs can still be different because the rows
of transition matrices are random draws from the mix-
ture weights of the base distribution. This property is
reflected in the following equations:

o0
Gy (GY=Gp) =Y whybe:, n=1,...,00
=1

GY~ > mdar, Gi=_ B, (8)
k=1 =1

where {wik};’f:l ~ DP(«,3;,) are rows of the tran-
sition matrix for the j** iHMM given that the base
distribution is equal to G7,.

The hyperparameters reflect the prior knowledge of
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how similar the tasks are. As n — oo, each base distri-
bution G? is assigned a distinct atom of a Gy, resulting
in all the tasks being quite different, therefore separate
iHMM learning is performed. On the other hand, as
1 — 0, the prior information indicates all the base dis-
tributions almost use the same atom G*, which corre-
sponds to the special case of DP-iHMM. Moreover, as
v — 0, each iHMM degenerates to a single-state HMM
and the model reduces to parametric-based clustering.

3.3. Inference for nDP-iHMM

Let O; = {0j1,...,0j7} represent the observation se-
quence from task j and let indicator variable c; denote
the atom G} for which Gg = G7,. The nDP-iHMM
mixture model can be written as follows

0je | ¢j, 856, {00} k=1 ~ F(05,,c;)
{efk}iokﬂ | H~H

sjt | ¢y 8j0—1, {w) Y oomy ~ Mult(w] )

{wik}?kﬂ | Cj, &, {Bitizs ~ DP(a75cj)
{81}z | v ~ Stick(y)
¢;j | ™ ~ Mult(m) 7 | n ~ Stick(n). (9)

The nDP-iHMM inference for a J-task MTL problem
is based on a Gibbs sampler. We truncate the top
level stick-breaking representation to K components
(K = 20 in our experiments) (Ishwaran & James,
2001), and the initialization includes nDP mixture
weights {m;}% |, center index c;, hidden state se-
quences {s;;}7_;, iHMM parameters {iHMM ; }H< | for
7 =1,...,J and hyperparameters n, v and «. We put
Gamma priors on the hyperparameters and repeat the
following steps until the Gibbs sampler converges:

1. Draw new center index ¢} according to p(c; =
k) o 7y, - p(O;|iHMMj,) for every task j.

2. For those tasks whose center indices are changed
c; # c;, generate new hidden state sequence
sj¢ using the parameter iHMMjc;. Recalculate
the unique HMM transition matrix A; for j =
1,...,J and the shared HMM observation matrix
By for k=1,...,K. Both of the A’s and B’s are
represented as counting matrices.

3. Sample new hidden state sequence s;; in the way
similar to the iHMM inference

p(sje =11 87", 0j,¢) =

p(sjt = llsji—1 =7, Sjee1 = ¢, 051, ¢ = k)

with S;t being the hidden state sequence exclud-
ing sjq, s}t the previous sampled value of s;;, 7y
the count of transitions from state value r to state
value [ in task j, and B; the mixing weight for
state [ given the task is using G7.

4. Sample new A’s by counting the transitions us-
ing s;¢’s. Sample new B’s (mixture components)
according to its posterior distribution. Generate
new iHMM;, parameters from the pair of A4; and
By.

5. Sample nDP mixture weight 7, from m, =
Uknf;f(l — vi), vg ~ Beta(l + mg,n +
Zf:k+1 ms), k =1,...,K — 1, vg = 1, where

my = Z;-le I(c; = k).

6. Sample 7 in the way similar to DP. Sample v and
« in the way similar to iHMM.

This Gibbs sampler involves simple steps for sampling
from standard distributions and is quite easy to imple-
ment in general problems, as long as the sample size
is not massive. Convergence tended to be rapid and
mixing good in examples we have considered.

4. Experiments
4.1. Synthetic Data

We apply the nDP-iHMM for discovering the rela-
tionships between 12 synthetic data sets. Each data
set contains 50 sequences of length 20, generated
from a distinct discrete HMM. For all HMMs, the
number of states M = 2 and the codebook size
C = 8. The parameters of the HMMs have the form
of {ﬂ'j = ﬁ'j,Aj = Aj —|—6§4,B]‘ = Bj —l—ejB},

€ EA
where 63»4 = el and 6;'3 =
€521 €22
B B B B
[%‘,11 €12 €13 €14 €15 93-0 %0 %O]
0.0 0.0 0.0 € €95 €26 €527 €os

A

Each non-zero element in €; b

and €; is in-

dependently drawn from a uniform distribu-
tion on the interval [0, 0.05]. For the first
three HMMs, j = 1,2,3, they use the same
_ 0.6950 - 0.8 0.2 —
Tz {0.3050 T [0.2 0.8 ] and Bj =
[ 0.05 01 0.7 01 0.05 00 0.0 0.0 ]

00 0.0 00 0.05 01 07 01 0.05 |’
implying that the first three tasks have the

same HMM parameters except that a small dis-

—Tsj afrgtn —0jt : tortion is added. Similarly, for 57 = 4,5,6,7
n. + « e 0jt), 1fl€1NL Ys J y Iy Uy 1y
(751 @kl)wzf,zlw fi " (oz) (o). _ [o8r2a] £ _[02 08] . = _
Bt Brg frmess (05t), if [=prv, "7 101276 |0 Y T | 0.8 0.2 | i~
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Figure 4. Hinton diagram of between-task similarities for
the synthetic problem.

(00 00 005 01 07 01 005 00],

| 00 005 01 07 01 005 00 00 ]

_ 04729 | & 0.5 0.5 .

T [0.5271 ] 45 = [0.5 0.5]’ and Bj =
[0.05 00 0.0 00 005 01 0.7 01)
0.1 005 0.0 00 00 005 0.1 0.7

j = 8,...,12. Therefore there are three clusters
among these 12 tasks.

The nDP-iHMM is applied to clustering the tasks. The
H is set to be a Dirichlet distribution with parameters
all equal to 1 and Ga(1,1) is imposed on hyperparam-
eters 17, v and «. We initialize all tasks with the same
center indices and let the nDP-iHMM infer the true
underlying relationships between the tasks. The re-
sult is shown by the Hinton diagram plotted in Fig.
4. In the Hinton diagram, the size of the green box
is proportional to the degree of similarity between two
tasks. The similarity measure corresponds to the pos-
terior probability that two tasks are grouped together,
which can be calculated by the proportion of Gibbs
sampling draws where tasks are assigned to the same
cluster. Note that this approach relies on soft proba-
bilistic clustering, so that the posterior mean estimate
of the base distribution for two tasks will always dif-
fer, but these estimates will converge as the posterior
probability of clustering increases. The evolution of
center indices are shown in Fig. 5. It can be seen that
the nDP-iHMM clusters the tasks well even when we
initialize with the same center indices.

4.2. Music Data

To demonstrate application of the nDP-iHMM on real
data, we consider the problem of music analysis. In
this experiment, we have ten 1-minute music clips ex-
tracted from different pieces. The reason for choosing
part of the piece instead of the whole piece is that we
are confident on the similarities of those clips. In this
way we are able to control the ground truth for the real

10 10 10
0 0 0
0 5000 0 5000 0 5000
10 10 10
0 0 0
0 5000 o 5000 0 5000
10 10 ‘ M 10 ‘
) R T AT
0 5000 0 5000 0 5000
10 H 10 10 ’
10 o T T
0 5000 o 5000 0 5000

Figure 5. The evolution of center indices versus Gibbs it-
erations for the 12 tasks.

application using our proposed model. These ten clips
were chosen deliberately with the following intended
clustering: 1) clip 1 is unique in style and instrumen-
tation; 2) clips 2 and 3, 4 and 5, 6 and 7, and 9 and
10 are intended to be paired together; 3) clip 8 is also
unique, but is of the same format (instrumentation) as
clips 6 and 7 (the names of the pieces are given in Fig.
6).

We wish for the nDP-iHMM to learn the relationships
between the clips, i.e., the similarities of these clips.
Meanwhile, we wish to learn an accurate iHMM for
each of the clips simultaneously. Each music clip is
sampled at 22 kHz and 10-dimensional Melfrequency
cepstral coefficient (MFCC) (Logan & Salomon, 2001)
features are extracted for every 25 ms non-overlapping
frame. The feature vectors across all the ten clips
are concatenated to perform vector quantization (VQ)
(Linde et al., 1980), mapping each feature vector to a
code within a VQ codebook of size 32. In our experi-
ment, we choose a sequence of 1 second windows, or 40
observations. Therefore each music clip is transformed
into 60 data sequences with 40 observations inside each
sequence.

We compare three methods for iHMM model learning:
(i) the proposed nDP-iHMM method, (ii) DP-iHMM,
for which a master level DP is used to couple all the
iHMMs, and (iii) STL-iHMM — the single task-learning
method, for which each clip is analyzed in isolation.

We compare the performance of the three methods by
evaluating the average of testing-sequence likelihood
averaged first within clip and then over all the clips.
For each clip, a certain number of training sequences
are selected and the remaining sequences are used as
testing data for that clip-dependent iHMM. The train-
ing data are chosen from the middle of the clip, be-
cause there may be a long quiet period in the two
ends. To have a comprehensive comparison, different
training set sizes are considered: 2,4,...,10,20 and
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(a) Number of training sequences for each clip

1: Beethoven-
Consecration of the Houst
2: Chopin-

Etudes Op 10 No 01

3: Rachmaninov-
Preludes Op 23 No 02

4: Scarlatti-

Sonata K. 135

5: Scarlatti-

Sonata K. 380

6: Debussy-

String Quartet op 10 Mvt |
7: Ravel-

String Quartet in F Mvt I1
8: Shostakovich-

String Quartet No 08 Mvt
9: Bach-Violin Concerto
BWV 1041 Mvt |
10:Bach-Violin Concerto
BWV 1042 Mvt |

(b) Index of music clip

Figure 6. (a) The average testing sequence likelihood using nDP-iHMM, DP-iHMM and STL-iHMM; (b) the Hinton
diagram of between-clip similarities based on sampled center indices in nDP-iHMM for the case of 20 training sequences.

30 sequences are used. All three methods are imple-
mented via Gibbs samplers and the Raftery and Lewis
test (Raftery & Lewis, 1992) is performed to deter-
mine the number of iterations needed for convergence.
All results shown in Fig. 6 are based on 20709 sam-
ples obtained after a burn-in period of 2098 iterations.
The setting of hyperparameters are the same as in Sec.
4.1. Figure 6(a) shows that the proposed nDP-iHMM
method consistently outperforms the other two meth-
ods, and the improvement is more dramatic when there
is a small amount of training data available. This is
because the nDP-iHMM performs data-level cluster-
ing and the clip-level clustering simultaneously. This
property is reflected by the Hinton diagram shown in
Fig. 6(b). It is clear that the nDP-iHMM captures the
between-clip similarity quite well.

The STL-iHMM and DP-iHMM do not provide a di-
rect measure of inter-task similarity, as provided by the
nDP. However, one may use an appropriate distance
measure to compute the similarity of the learned iH-
MMs. For this purpose, we use a distance measure
similar to that considered by Aucouturier and Pachet
(2002). The distance between two iHMMs is defined
as

D(iHMM;, iHMM;) =

K

> "llog p(S;[HMM;) — log p(S,[iHMM;)] +
i
1

Ki

=1

= I

[log p(S;[iHMM;) — log p(S; [iHMM,)], (11)

[\

Il
A

where S;’s are sequences simulated from iHMM,; and
S;’s are sequences simulated from iHMM;. The simi-
larity between clip ¢ and clip j is then calculated as

| D(HMM;, iHMMj)|2)
2 )

Siml(i, j) = eap(— (12)

a

where the variance o2 is arbitrary. We compute sim-

ilarities of clips using (12) for the case of 6 training
sequences, and plot the Hinton diagrams for all the
three methods in Figs. 7(a), (b) and (c), respectively.
We observe that the nDP-iHMM (Fig. 7(a)) does the
best in discovering the sharing structure of the music
clips with limited training data.

5. Conclusion

We have proposed a new hierarchical Bayesian model
for multi-tasking learning with sequential data. The
infinite hidden Markov model (iHMM) is used to
model each task, solving the fundamental problem of
model selection in HMMs. A nested Dirichlet pro-
cess (nDP) is then imposed as a prior for the iH-
MDMs, providing task-level clustering as well as data-
level clustering (here the data-level clustering corre-
sponds to the HMM states). The clustered iHMMs
share the same base distribution (observation matrix)
but have different transition matrices, which results
in unique generative models for each task. Inference
for the nDP-iHMM is based on a Gibbs sampler and
promising nDP-iHMM results have been demonstrated
on both simulated data and real (music) data.

An important area for future research involves devel-
opment of techniques to improve computational effi-
ciency. While the learned sharing mechanism between
the musical pieces is very encouraging, the MCMC
sampler is too expensive computationally for practical
implementation. Therefore, future research will con-
sider more approximate but efficient inference engines,
such as variational Bayesian analysis.
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