
Building Sparse Large Margin Classifiers

Mingrui Wu mingrui.wu@tuebingen.mpg.de
Bernhard Schölkopf bernhard.schoelkopf@tuebingen.mpg.de
Gökhan Bakir goekhan.bakir@tuebingen.mpg.de

Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany

Abstract

This paper presents an approach to build
Sparse Large Margin Classifiers (SLMC) by
adding one more constraint to the stan-
dard Support Vector Machine (SVM) train-
ing problem. The added constraint explicitly
controls the sparseness of the classifier and
an approach is provided to solve the formu-
lated problem. When considering the dual
of this problem, it can be seen that build-
ing an SLMC is equivalent to constructing an
SVM with a modified kernel function. Fur-
ther analysis of this kernel function indicates
that the proposed approach essentially finds a
discriminating subspace that can be spanned
by a small number of vectors, and in this sub-
space different classes of data are linearly well
separated. Experimental results over several
classification benchmarks show that in most
cases the proposed approach outperforms the
state-of-art sparse learning algorithms.

1. Introduction

In the binary classification problem, we are given a set
of training data {(xi, yi)}N

i=1, where xi ∈ X ⊆ Rd is
the input data, X is the input space, and yi ∈ {−1, 1}
is the class label. The goal is to build a classification
function f̂ : X → {+1,−1},x → f̂(x), which can
correctly classify the unseen test data.

Many kernel learning algorithms, such as Support Vec-
tor Machines (SVM) (Vapnik, 1995), result in a clas-
sification function as f̂(x) = sign(f(x)), where f(·)

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

takes the form:

f(x) =
NXV∑
i=1

α̂iK(x̂i,x) + b (1)

where x̂i ∈ X , 1 ≤ i ≤ NXV , are called Expansion
Vectors (XVs) in this paper1, NXV is the number of
XVs, α̂i ∈ R is the expansion coefficient associated
with x̂i, b ∈ R is the bias and K : X × X → R is a
kernel function.

Usually K is a positive definite kernel (Schölkopf &
Smola, 2002), which implicitly introduces a feature
space F . Let φ(·) denote the map from X to F , then
K(x,x′) = 〈φ(x), φ(x′)〉. So (1) can also be written as
a linear function

f(x) = 〈Ψ, φ(x)〉+ b (2)

where

Ψ =
NXV∑
i=1

α̂iφ(x̂i) (3)

is the linear expansion of XVs in the feature space F .

When solving practical problems, for example in real-
time computer vision, in addition to good classification
accuracy, high classification speed is also desirable.
The time of calculating (1) (or (2)) is proportional to
NXV , so if NXV is large, classification speed is slow.
Thus several sparse learning algorithms have been pro-
posed to build kernel classifiers with small NXV .

The Reduced Set (RS) method (Burges, 1996;
Schölkopf & Smola, 2002) was proposed to simplify
(1) by determining Nz vectors z1, . . . , zNz

and corre-

1The x̂i, 1 ≤ i ≤ NXV have different names in different
kernel learning algorithms. For example, they are called
support vectors in SVM, and relevance vectors in the Rel-
evance Vector Machine (Tipping, 2001). In this paper we
uniformly call them expansion vectors for the sake of sim-
plicity.



Building Sparse Large Margin Classifiers

sponding expansion coefficients β1, . . . , βNz
such that

‖ Ψ−
Nz∑
j=1

βjφ(zj) ‖2 (4)

is minimized. RS methods approximate and replace Ψ
in (2) by

∑Nz

j=1 βjφ(zj), where the integerNz < NSV is
chosen a priori. Therefore the objective of RS method
does not relate to classification performance directly,
and in order to apply RS methods, we need to build
another kernel classifier in advance.

In (Lee & Mangasarian, 2001), the Reduced Support
Vector Machine (RSVM) algorithm is proposed, which
randomly selects Nz vectors from the training set as
XVs, and then computes the expansion coefficients.
This algorithm can be applied to build sparse kernel
classifiers. But as the XVs are chosen randomly, and
may not be good representatives of the training data,
good classification performance can not be guaranteed
when Nz is small (Lin & Lin, 2003).

The Relevance Vector Machine (RVM) (Tipping, 2001)
is another algorithm which leads to sparse kernel clas-
sifiers. The basic idea of RVM is to assume a prior
of the expansion coefficients which favors sparse solu-
tions.

In this paper, we propose an algorithm to build Sparse
Large Margin Classifiers (SLMC)2 by modifying the
standard SVM training problem. By adding a con-
straint, we explicitly control the sparseness of the clas-
sifier.

The rest of this paper is organized as follows. In sec-
tion 2, we formulate the SLMC training problem and
propose an approach to solve it. The details of the
approach are described in section 3 and section 4. In
section 5, we analyze the proposed algorithm and point
out that it actually finds a discriminating subspace of
the feature space F . Some comparisons with related
approaches are given in section 6. Experimental re-
sults are provided in section 7 and we conclude the
paper in the last section.

2. Building an SLMC

Our objective is as follows: given an positive integer
Nz, we want to build a classifier such that the number
of XVs of the classifier equals Nz and the margin of
the classifier is as large as possible. This way we build
a large margin classifier whose sparseness is explicitly

2Here we don’t use the phrase “sparse SVM” because
the XVs of the resulting classifier are not necessarily sup-
port vectors, i.e. they may not lie near the classification
boundary.

controlled.

To achieve this, we propose to solve the problem (5)–
(8), where C is a positive constant, w ∈ F is the weight
vector of the decision hyperplane in feature space, b ∈
R is the bias of the classifier, ξ = [ξ1, . . . , ξN ]> ∈ RN

is the vector of slack variables, Z = [z1, . . . , zNz ] ∈
Rd×Nz is the matrix of XVs and β = [β1, . . . , βNz

]> ∈
RNz is the vector of expansion coefficients.

min
w,ξ,b,β,Z

1
2
w>w + C

N∑
i=1

ξi (5)

subject to yi(w>φ(xi) + b) ≥ 1− ξi ∀i (6)
ξi ≥ 0 ∀i (7)

w =
Nz∑
i=1

φ(zi)βi (8)

It can be seen that the above problem is a standard
(soft margin) SVM training problem with one added
constraint (8) saying that the weight vector of the de-
cision hyperplane equals the expansion of the φ(zi),
1 ≤ i ≤ Nz. Note that the zi are also variables of the
objective function, so they need to be computed when
solving the optimization problem.

Because of the constraint (8), the above problem is not
convex, thus we propose a gradient based approach
described as follows.

Let G denote the objective function (5). According
to the constraints (6)–(8), w and ξ can be completely
determined by b, β and Z. So G can be written as

G(b,β,Z) =
1
2
w>w + C

N∑
i=1

ξi (9)

where w depends on β and Z, while ξi depends on β,
Z and b.

At any fixed Z, G becomes a function of b and β,
which is denoted by G(b,β | Z) in the following. To
compute the minimum of the function G, we define
another function W (Z),

W (Z) = min
b∈R,β∈RNz

G(b,β | Z) (10)

that is, at any given Z ∈ Rd×Nz , the value of W (Z) is
the minimum of the following optimization problem,

min
w,ξ,b,β

1
2
w>w + C

N∑
i=1

ξi (11)

subject to yi(w>φ(xi) + b) ≥ 1− ξi ∀i (12)
ξi ≥ 0 ∀i (13)

w =
Nz∑
i=1

φ(zi)βi (14)



Building Sparse Large Margin Classifiers

The above problem is the same as problem (5)–(8)
except that Z is not variable but fixed.

For any A ⊆ Rd×Nz , according to (10), clearly we have

min
Z∈A

W (Z) = min
b,β,Z∈A

G(b,β,Z) (15)

where b ∈ R and β ∈ RNz .

Therefore any (local) minimum of W (Z) is also a (lo-
cal) minimum of G(b,β,Z), which means the (local)
minimum of the original problem (5)–(8) can be found
by computing the (local) minimum of function W (Z).
Here we propose to minimize W (Z) by the gradient
based algorithm. To this end, at any given Z, we need
to calculate both the function value W (Z) and the
gradient ∇W (Z). These two problems are discussed
in the following two sections respectively.

3. Computing W (Z) and β

To compute the function value of W (Z) at any given
Z, we need to solve the convex optimization problem
(11)–(14), which is actually a problem of building an
SVM with given XVs z1, . . . , zNz

. This problem has
already been considered in the RSVM algorithm (Lee
& Mangasarian, 2001; Lin & Lin, 2003). But in the
RSVM algorithm, only an approximation of the prob-
lem (11)–(14) is solved. Here we will propose a dif-
ferent method which exactly solves this problem. (See
section 6.2 for a discussion and section 7.6 for a com-
parison of the experimental results of these two meth-
ods.)

Substituting (14) into (11) and (12), we have

min
ξ,b,β

1
2
β>Kzβ + C

N∑
i=1

ξi (16)

subject to yi(β>ψz(xi) + b) ≥ 1− ξi ∀i(17)
ξi ≥ 0 ∀i (18)

where

ψz(xi) = [K(z1,xi), . . . ,K(zNz
,xi)]> (19)

is the empirical kernel map (Schölkopf & Smola, 2002)
and Kz is the kernel matrix of zi, i.e. Kz

ij = K(zi, zj).

Note that when Nz = N and zi = xi, 1 ≤ i ≤ N , this
is the standard SVM training problem. In contrast,
the problem (16)–(18) is to train a linear SVM in a
subspace spanned by φ(zi), 1 ≤ i ≤ Nz, where zi are
are not necessarily training examples.

Now we investigate its dual problem. To derive it, we

introduce the Lagrangian,

L(ξ, b,β,α,γ) (20)

=
1
2
β>Kzβ + C

N∑
i=1

ξi −
N∑

i=1

γiξi

−
N∑

i=1

αi[yi(β>ψz(xi) + b)− 1 + ξi]

with Lagrange multipliers γi ≥ 0 and αi ≥ 0.

The derivatives of L(ξ, b,β,α,γ) with respect to the
primal variables must vanish,

∂L

∂β
= Kzβ −

N∑
i=1

αiyiψz(xi) = 0 (21)

∂L

∂b
= −

N∑
i=1

αiyi = 0 ∀i (22)

∂L

∂ξi
= C − αi − γi = 0 ∀i (23)

Equation (21) leads to

β = (Kz)−1
N∑

i=1

αiyiψz(xi) (24)

Substituting (21)–(23) into (20) and using (24), we
arrive at the dual form of the optimization problem:

max
α∈RN

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK̂z(xi,xj) (25)

subject to
N∑

i=1

yiαi = 0 (26)

and 0 ≤ αi ≤ C ∀i (27)

where

K̂z(xi,xj) = ψz(xi)>(Kz)−1ψz(xj) (28)

The function K̂z(·, ·) defined by (28) is a positive def-
inite kernel function (Schölkopf & Smola, 2002). To
see this, consider the following map3,

φz(xi) = Tψz(xi) (29)

where ψz(·) is defined by (19) and

T = Λ− 1
2 V> (30)

3The map defined in (29) is called the “whitened”
empirical kernel map or “kernel PCA map”(Schölkopf &
Smola, 2002).



Building Sparse Large Margin Classifiers

where Λ is a diagonal matrix of eigenvalues of matrix
Kz and V is a matrix whose columns are eigenvectors
of Kz. So

T>T = VΛ−1V = (Kz)−1 (31)

Combining equation (29)and (31) we have

〈φz(xi), φz(xj)〉 = ψz(xi)>(Kz)−1ψz(xj) = K̂z(xi,xj)

It can be seen that problem (25)–(27) has the same
form as the dual of an SVM training problem. There-
fore given Z, computing the expansion coefficients of
SVM with kernel function K is equivalent to training
an SVM with a modified kernel function K̂z defined by
(28).

Since problem (25)–(27) is the dual of problem (11)–
(14), the optima of these two problems are equal to
each other. So given Z, assuming αz

i , 1 ≤ i ≤ N are
the solution of (25)–(27), then we can compute W (Z)
as

W (Z) =
N∑

i=1

αz
i −

1
2

N∑
i

N∑
j=1

αz
iα

z
jyiyjK̂z(xi,xj) (32)

According to (24), the expansion coefficients β can be
calculated as

β = (Kz)−1
N∑

i=1

αz
i yiψz(xi) = (Kz)−1(Kzx)Yαz

(33)
where ψz(·) is defined by (19), Kzx is the matrix de-
fined by Kzx

ij = K(zi,xj), Y is a diagonal matrix of
class labels, i.e. Yii = yi, and αz = [αz

1, . . . , α
z
N ]>.

4. Computing ∇W (Z)

To calculate ∇W (Z), we can apply the following
lemma, which closely follows (Chapelle et al., 2002):

Lemma 1. The derivatives of W (Z) with respect to
zuv, which denotes the v-th component of vector zu,
1 ≤ u ≤ Nz, 1 ≤ v ≤ d, can be computed as follows:

∂W

∂zuv
= −1

2

N∑
i,j=1

αz
iα

z
jyiyj

∂K̂z(xi,xj)
∂zuv

(34)

where αz
i , 1 ≤ i ≤ N denote the solution of problem

(25)–(27). In other words, ∇W (Z) can be computed
as if αz did not depend on Z.

A quite similar lemma is proved in (Chapelle et al.,
2002) for the case where there is no upper bound on

αz
i . In the present paper αz

i is upper bounded by C as
shown in (27). However lemma 1 can be proved with
the same method adopted by (Chapelle et al., 2002).

According to (28),

∂K̂z(xi,xj)
∂zuv

= (
∂ψz(xi)
∂zuv

)>(Kz)−1ψz(zj)

+ ψz(zi)>(Kz)−1 ∂ψz(xj)
∂zuv

+ ψz(xi)>
∂(Kz)−1

∂zuv
ψz(xj)

where ∂(Kz)−1

∂zuv
can be calculated as

∂(Kz)−1

∂zuv
= −(Kz)−1 ∂K

z

∂zuv
(Kz)−1

So at any given Z, W (Z) and∇W (Z) can be computed
as (32) and (34) respectively. In our implementation,
we use the LBFGS algorithm (Liu & Nocedal, 1989)
to minimize W (Z), which is an efficient gradient based
optimization algorithm.

5. The Kernel Function K̂z and Its
Corresponding Feature Space Fz

The kernel function K̂z plays an important role in our
approach. In this section, some analysis of K̂z is pro-
vided, which will give us insights into how to build an
SLMC.

It is well known that training an SVM with a nonlinear
kernel function K in the input space X is equivalent
to building a linear SVM in a feature space F . The
map φ(·) from X to F is implicitly introduced by K.
In section 3, we derived that for a given set of XVs
z1, . . . , zNz

, training an SVM with kernel function K
is equivalent to building an SVM with another kernel
function K̂z, which is in turn equivalent to construct-
ing a linear SVM in another feature space. Let Fz

denote this feature space, then the map from the X to
Fz is φz(·), which is explicitly defined by (29).

According to (29), φz(x) = Tψz(x). To investigate
the role of the matrix T, consider Uz defined by

Uz = [φ(z1), . . . , φ(zNz
)]T>

Then
(Uz)>Uz = TKzT> = I

where I is the unit matrix, which means that T> or-
thonormalizes φ(zi) in the feature space F . Thus the
columns of Uz can be regarded as an orthonormal ba-
sis of a subspace of F . For any x ∈ X , if we calculate



Building Sparse Large Margin Classifiers

the projection of φ(x) into this subspace, we have

(Uz)>φ(x) = T[φ(z1), . . . , φ(zNz
)]>φ(x)

= T[K(z1,x), . . . ,K(zNz
,x)]>

= Tψz(x) = φz(x)

This shows that the subspace spanned by the columns
of Uz is identical to Fz. As Uz are obtained by or-
thonormalizing φ(zi), Fz is a subspace of F and it is
spanned by φ(zi), 1 ≤ i ≤ Nz.

Now that for a given set of XVs zi, building an SVM
with a kernel functionK is equivalent to building a lin-
ear SVM in Fz, in order to get good classification per-
formance, we have to find a discriminating subspace
Fz where two classes of data are linearly well sepa-
rated. Based on this point of view, we can see that
our proposed approach essentially finds a subspace Fz

where the margin of the training data is maximized.

6. Comparison with Related
Approaches

6.1. Modified RS Method

In the second step of the RS method, after the XVs
z1, . . . , zNz

are obtained, the expansion coefficients
β are computed by minimizing (4), which leads to
(Schölkopf & Smola, 2002)

β = (Kz)−1(Kzx)Yα (35)

where Kzx and Y are defined as in (33), and α is the
solution of building an SVM with kernel function K
on the training data set {(xi, yi)}N

i=1.

We propose to modify the second step of RS method
as (33). Clearly (35) and (33) are of the same form.
The only difference is that in (35), α is the solution of
training an SVM with kernel function K, while in (33),
αz is the solution of training an SVM with the kernel
function K̂z, which takes the XVs zi into considera-
tion. As β calculated by (33) maximizes the margin of
the resulting classifier, we can expect a better classi-
fication performance of this modified RS method. We
will see this in the experimental results.

6.2. Comparison with RSVM and a Modified
RSVM Algorithm

One might argue that our approach appears to be sim-
ilar to the RSVM, because the RSVM algorithm also
restricts the weight vector of the decision hyperplane
to be a linear expansion of Nz XVs.

However there are two important differences between
the RSVM and our approach. The first one (and prob-

ably the fundamental one) is that in the RSVM ap-
proach, Nz XVs are randomly selected from the train-
ing data in advance, but are not computed by finding a
discriminating subspace Fz . The second difference lies
in the method for computing the expansion coefficients
β. Our method exactly solves the problem (16)–(18)
without any simplifications. But in the RSVM ap-
proach, certain simplifications are performed, among
which the most significant one is changing the first
term in the objective function (16) from 1

2β>Kzβ to
1
2β>β. This step immediately reduces the problem
(16)–(18) to a standard linear SVM training problem
(Lin & Lin, 2003), where β becomes the weight vector
of the decision hyperplane and the training set be-
comes {ψz(xi), yi}N

i=1.

On the other hand, our method of computing β is
to build a linear SVM in the subspace Fz, which
is to train a linear SVM for the training data set
{φz(xi), yi}N

i=1.

Now let us compare the two training sets mentioned
above, i.e. {φz(xi), yi}N

i=1 and {ψz(xi), yi}N
i=1. As de-

rived in section 5, φz(xi) are calculated by projecting
φ(xi) onto a set of vectors, which is obtained by or-
thonormalizing φ(zj) (1 ≤ j ≤ Nz), while ψz(xi) is
calculated by computing the dot production between
φ(xi) and φ(zj) (1 ≤ j ≤ Nz) directly, without the
step of orthonormalization.

Analogous to the modified RS method, we propose a
modified RSVM algorithm: Firstly, Nz training data
are randomly selected as XVs, then the expansion co-
efficients β are computed by (33).

6.3. Comparison with the RVM

The RVM (Tipping, 2001) algorithm and many other
sparse learning algorithms, such as sparse greedy algo-
rithms (Nair et al., 2002), or SVMs with l1-norm regu-
larization (Bennett, 1999), result in a classifier whose
XVs are a subset of the training data. In contrast,
the XVs of SLMC do not necessarily belong to the
training set. This means that SLMC can in principle
locate better discriminating XVs. Consequently, with
the same number of XVs, SLMC can have better clas-
sification performance than the RVM and other sparse
learning algorithms which select the XVS only from
the training data. This can be seen from the experi-
mental results provided in section 7.6.

6.4. SLMC vs Neural Networks

Since the XVs of the SLMC do not necessarily belong
to the training set and training an SLMC is a gra-
dient based process, the SLMC can be thought of as



Building Sparse Large Margin Classifiers

a neural network with weight regularization (Bishop,
1995). However, there are clear differences between
the SLMC algorithm and a feed forward neural net-
work. First, analogous to SVM, SLMC considers the
geometric concept of margin, and aims to maximizes
it. To this end, the regularizer takes into account the
kernel matrix Kz. Furthermore, since SLMC mini-
mizes the “hinge-loss”, a tighter bound on the zero-
one classification loss, better generalization behavior
may be expected than for a neural network algorithm
minimizing the squared loss.

On the other hand, analogous to neural networks, we
also have an additional regularization via the num-
ber Nz determining the number of XVs, which is a
clear advantage in some practical applications where
runtime constraints exist and the maximum prediction
time is known a priori. Note that the prediction time
(the number of kernel evaluations) of a soft margin
SVM scales linearly with the number of training pat-
terns (Steinwart, 2003).

7. Experimental Results

7.1. Approaches to be Compared

The following approaches are compared in the ex-
periments: Standard SVM, RS method, modified RS
method (MRS, cf. section 6.1), RSVM, modified
RSVM (MRSVM, cf. section 6.2), relevance vector
machine (RVM), and the proposed SLMC approach.

Note that in our experiments, RS and MRS use exactly
the same XVs, but they compute the expansion coeffi-
cients by (35) and (33) respectively. Similarly RSVM
and MRSVM also use the same set of XVs, the differ-
ence lies in the method for computing the expansion
coefficients.

7.2. Data Sets

Seven classification benchmarks are considered:
USPS, Banana, Breast Cancer, Titanic, Waveform,
German and Image. The last six data sets are pro-
vided by Gunnar Rätsch and are downloaded from
http://ida.first.fraunhofer.de/projects/bench. For the
USPS data set, 7291 examples are used for training
and the remaining 2007 are for testing. For each of
the last six data sets, there are 100 training/test splits
and we follow the same scheme as (Tipping, 2001): our
results show averages over the first 10 of those.

7.3. Parameter Selection

A Gaussian kernel is used in the experiments:

K(x,x′) = exp(−γ ‖ x− x′ ‖2) (36)

The parameters for different approaches are as follows:

Standard SVM: For the USPS data set, we use the
same parameters as in (Schölkopf & Smola, 2002):
C = 10 and γ = 1/128. For the other data sets, we
use the same parameters provided by Gunnar Rätsch,
which are shown on the same website where these data
sets are downloaded.

RSVM and MRSVM: We perform 5-fold cross vali-
dation on the training set to select parameters for
the RSVM. MRSVM uses the same parameters as the
RSVM.

RS method: Obviously the RS method uses the same
kernel parameter as the standard SVM, since it aims
to simplify the standard SVM solution.

SLMC and MRS: In our experiments, they use exactly
the same parameters as the standard SVM on all the
data sets.

RVM: The results for the RVM are taken directly from
(Tipping, 2001), where 5-fold cross validation was per-
formed for parameter selection.

7.4. Experimental Settings

For each data set, firstly a standard SVM is trained
with the LIBSVM software4. (For USPS, 10 SVMs
are built, each trained to separate one digit from all
others). Then the other approaches are applied. The
ratio Nz/NSV varies from 5% to 10%.

For the RSVM, we use the implementation contained
in the LIBSVM Tools5.

For the RS method, there is still no standard or widely
accepted implementation, so we tried three different
ones: a program written by ourselves, the code con-
tained in the machine learning toolbox SPIDER6, and
the code contained in the statistical pattern recogni-
tion toolbox STPRTOOL7. For each data set, we apply
these three implementations and select the best one
corresponding to the minimal value of the objective
function (4). Thus our RS results respect the state of
the art in RS methods.

7.5. Choice of the Initial XVs

The initial XVs of the SLMC are randomly selected
from the training data. More complicated methods
have been tried and the resulting classification results
are similar. For example, using K-means algorithm to

4From http://www.csie.ntu.edu.tw/˜cjlin/libsvm
5From http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools
6From http://www.kyb.mpg.de/bs/people/spider
7From http://cmp.felk.cvut.cz/˜xfrancv/stprtool



Building Sparse Large Margin Classifiers

choose the initial XVs can improve the final classifica-
tion results on the USPS dataset, but the improvement
is as small as 0.1%. So here we only report the results
obtained by random initialization.

7.6. Numerical Results

Experimental results are shown in Table 1. In Table 1,
NSV stands for the number of Support Vectors (SVs)
of the standard SVM, Nz represents the number of
XVs of other sparse learning algorithms.

From Table 1, it can be seen the classification accu-
racy of SLMC is comparable with the full SVM when
Nz/NSV = 0.1.

Table 1 also illustrates that SLMC outperforms the
other sparse learning algorithms in most cases. Also
the SLMC usually improves the classification results
of the RS method. In some cases the improvement is
large such as on Banana and Image data sets.

When comparing MRS with RS, and MRSVM with
RSVM, the results in Table 1 demonstrate that in most
cases MRS beats RS, and similarly, MRSVM usually
outperforms RSVM a little. This means that for a
given set of XVs, computing the expansion coefficients
according to (33) is a good choice.

7.7. Some Results on XVs

It is known that the XVs of standard SVM are sup-
port vectors, which lie near the classification bound-
ary. Here we give three examples to illustrate what
the XVs of SLMC look like.

Example 1. Building an SVM involves solving problem
(5)–(7), while building an SLMC is to solve the same
problem plus one more constraint (8). If we want to
build an SLMC with the same number of XVs as a
standard SVM, namely Nz = NSV , then the optimal
solution of problem (5)–(7) is also a global optimal so-
lution of problem (5)–(8), since it satisfies all the con-
straints. So in this special case, the support vectors of
the standard SVM are also an optimal choice of XVs
for SLMC.

Example 2. On the USPS data set, we built an SVM
on training data with γ = 1/128, C = 10 to separate
digit ’3’ from digit ’8’. The resulting SVM has 116 SVs
and a test error rate of 1.8%. Then we built an SLMC
with the same γ and C, while Nz = 12 (i.e. about 10%
of the number of SVs). The resulting SLMC also has
a test error rate of 1.8%. As shown in Figure 1, the
images of the 12 XVs produced by SLMC approach
look like digits.

Figure 1. Images of XVs for separating ’3’ and ’8’

7.8. Training Time of SLMC

Building an SLMC is a gradient based process, where
each iteration consists of computing the φz(xi), 1 ≤
i ≤ N , training a linear SVM over {φz(xi), yi}N

i=1,
8

and then computing the gradient ∇W (Z).

Let TSV M (N, d) denote the time complexity of train-
ing a linear SVM over a data set containing N d-
dimensional vectors, then the time complexity of train-
ing an SLMC is

O(n× (NNzd+ TSV M (N,Nz) +N3
z +N2

z d))

where n is the number of iterations of the SLMC train-
ing process. In experiments, we found that the SLMC
algorithm requires 20–200 iterations to converge.

We cannot directly compare the training time of
SLMC with RS methods and RVM (Relevance Vec-
tor Machine), because we used C++ to implement
our approach, while the publicly available codes of RS
methods and the RVM are written in Matlab. Using
these implementations and a personal computer with
Pentium 4 CPU of 3GHz, one gets the following num-
bers: On the USPS dataset, SLMC takes 6.9 hours to
train, while the RS method takes 2.3 hours. On the
Banana dataset, SLMC training is about 1.5 seconds,
and RVM training is about 5 seconds.

8. Conclusions

We presented an approach to build sparse large margin
classifiers, which essentially finds a discriminating sub-
space Fz of the feature space F . Experimental results
indicate that this approach often exhibits a better clas-
sification accuracy than the sparse learning algorithms

8Equivalently we can build an SVM with the kernel

function K̂z over {xi, yi}N
i=1. But this is much slower be-

cause it is time consuming to compute K̂z(·, ·) defined by
(28).



Building Sparse Large Margin Classifiers

Table 1. Results on seven classification benchmarks. The test error rates of each algorithm are presented. The NSV for
the last six datasets are the averages over 10 training/test splits. The best result in each group is shown in boldface.
The number of XVs of the RVM is not chosen a priori, but comes out as a result of training. So for the RVM, the ratio
Nz/NSV is given in order to compare it with other algorithms. For each data set, the result of the RVM is shown in
boldface if it is the best compared to the other sparse learning algorithms.

Dataset USPS Banana Breast Cancer Titanic Waveform German Image

SVM NSV 2683 86.7 112.8 70.6 158.9 408.2 172.1
Error(%) 4.3 11.8 28.6 22.1 9.9 22.5 2.8

RS 4.9 39.4 28.8 37.4 9.9 22.9 37.6
MRS 4.9 27.6 28.8 23.9 10.0 22.5 19.4

Nz/NSV = 5% RSVM 11.6 29.9 29.5 24.5 15.1 23.6 23.6
MRSVM 11.5 28.1 29.4 24.8 14.7 23.9 20.7
SLMC 4.9 16.5 27.9 26.4 9.9 22.3 5.2

RS 4.7 21.9 27.9 26.6 10.0 22.9 18.3
MRS 4.8 17.5 29.0 22.6 9.9 22.6 6.9

Nz/NSV = 10% RSVM 8.2 17.5 31.0 22.9 11.6 24.5 14.2
MRSVM 8.0 16.9 30.3 23.9 11.8 23.7 12.7
SLMC 4.7 11.0 27.9 22.4 9.9 22.9 3.6

RVM Nz/NSV (%) 11.8 13.2 5.6 92.5 9.2 3.1 20.1
Error(%) 5.1 10.8 29.9 23.0 10.9 22.2 3.9

to which we compared.

A by-product of this paper is a method for calculat-
ing the expansion coefficients of SVMs for given XVs.
Based on this method we proposed modified version of
the RS method and the RSVM. Experimental results
show that these two modified algorithms can usually
improve the classification accuracy of their counter-
parts. (One can also try this method on other algo-
rithms such as the RVM.)

Finally, we propose that the technique of adding one
more constraint (8) to explicitly control the sparse-
ness can be applied to build other sparse learning al-
gorithms, such as sparse kernel fisher, sparse kernel
PCA, sparse one-class SVM and sparse regression al-
gorithms, etc.

References

Bennett, K. P. (1999). Combining support vector and
mathematical programming methods for classifica-
tion. In B. Schölkopf, C. Burges and A. Smola
(Eds.), Advances in kernel methods, 307–326. Cam-
bridge MA: The MIT Press.

Bishop, C. M. (1995). Neural networks for pattern
recognition. Oxford, UK: Oxford University Press.

Burges, C. J. C. (1996). Simplified support vector de-
cision rules. Proc. 13th International Conference on
Machine Learning (pp. 71–77). Morgan Kaufmann.

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee,

S. (2002). Choosing multiple parameters for support
vector machines. Machine Learning, 46, 131–159.

Lee, Y.-J., & Mangasarian, O. L. (2001). RSVM: re-
duced support vector machines. CD Proceedings of
the First SIAM International Conference on Data
Mining. Chicago.

Lin, K.-M., & Lin, C.-J. (2003). A study on reduced
support vector machines. IEEE Transactions on
Neural Networks, 14, 1449–1459.

Liu, D. C., & Nocedal, J. (1989). On the limited
memory BFGS method for large scale optimization.
Math. Programming, 45, 503–528.

Nair, P. B., Choudhury, A., & Keane, A. J. (2002).
Some greedy learning algorithms for sparse regres-
sion and classification with mercer kernels. Journal
of Machine Learning Research, 3, 781–801.

Schölkopf, B., & Smola, A. J. (2002). Learning with
kernels. Cambridge, MA: The MIT Press.

Steinwart, I. (2003). Sparseness of support vector ma-
chine. Journal of Machine Learning Research, 4,
1071–1105.

Tipping, M. E. (2001). Sparse bayesian learning and
the relevance vector machine. Journal of Machine
Learning Research, 1, 211–214.

Vapnik, V. (1995). The nature of statistical learning
theory. New York: Springer Verlag.


