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Abstract

Given a classification problem, our goal is to
find a low-dimensional linear transformation
of the feature vectors which retains informa-
tion needed to predict the class labels. We
present a method based on maximum condi-
tional likelihood estimation of mixture mod-
els. Use of mixture models allows us to ap-
proximate the distributions to any desired
accuracy while use of conditional likelihood
as the contrast function ensures that the
selected subspace retains maximum possi-
ble mutual information between feature vec-
tors and class labels. Classification exper-
iments using Gaussian mixture components
show that this method compares favorably
to related dimension reduction techniques.
Other distributions belonging to the expo-
nential family can be used to reduce dimen-
sions when data is of a special type, for exam-
ple binary or integer valued data. We provide
an EM-like algorithm for model estimation
and present visualization experiments using
Gaussian and Bernoulli mixture models.

1. Introduction

Dimensionality reduction is a frequently used pre-
processing step for supervised learning tasks. Re-
ducing dimensions may improve classifier performance
since it can suppress noise in the data and act as a
form of regularization. Also, meaningful low dimen-
sional representation can help in visualizing data sets
and is an important tool in exploratory data analysis.

In this paper, we consider the problem of finding dis-
criminative linear feature transformations. Given a
collection of d-dimensional training samples and their
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class labels, the goal is to find an L-dimensional hyper-
plane in R

d such that the projected samples belonging
to various classes are well separated. Our approach
to this problem, termed supervised dimensionality re-
duction using mixture models (SDR-MM), is to model
each class using a mixture model. The parameters of
the model include affine parameters for a subspace to
which the mixture means are constrained. Gaussian
mixtures can approximate arbitrarily complex densi-
ties by lowering the minimum allowed variance and
increasing the number of mixture components. Hence,
this approach is semi-parametric - the subspace is de-
termined by a set of affine parameters, while the distri-
butions on the projected space are approximated non-
parametrically. We use maximum conditional likeli-
hood (MCL) estimation to determine the parameters
of the lower dimensional subspace which ensures that
the predictive information in the feature vectors is re-
tained in the projected space. MCL has been widely
used as a discriminative objective function for estimat-
ing hidden markov models in speech recognition and
for Gaussian mixture models in the context of classifi-
cation in (Jebara & Pentland, 1998).

Some dimension reduction methods make restrictive
parametric assumptions about the distributions. For
example, Fisher’s linear discriminant analysis (LDA)
can be obtained by maximum likelihood estimation as-
suming that the classes are Normally distributed with
a common covariance matrix and different means, with
the means constrained to lie in an L dimensional sub-
space. Other parametric methods include projection
pursuit regression (Friedman & Stuetzle, 1981) and
Generalized additive models (Hastie & Tibshirani,
1986). More recently, several semi-parametric meth-
ods have been proposed for supervised dimensional-
ity reduction including sliced inverse regression (Li,
1991) and principal Hessian directions (pHd) (Li,
1992). Sufficient dimensionality reduction (Glober-
son & Tishby, 2003) is designed for the unsupervised
case and uses maximum entropy principle for estimat-
ing the exponential models involved.
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In terms of the density model used, the method most
closely related to SDR-MM is Mixture discriminant
analysis (MDA) (Hastie & Tibshirani, 1996) which
generalizes LDA by approximating each of the classes
by a mixture of Gaussians all of which have a com-
mon covariance matrix. SDR-MM differs from MDA
in two important ways. Firstly, in SDR-MM, we use
spherical Gaussian distributions while in MDA each
Gaussian has the same full-covariance matrix. While
this may mean that SDR-MM needs to use more mix-
ture components for each class, the total number of
parameters to be estimated is often reduced from not
having to estimate the d2 parameters of the covariance
matrix. Secondly, in MDA, parameters are estimated
using maximum likelihood, while in SDR-MM, the pa-
rameters are estimated discriminatively by maximiz-
ing the conditional likelihood which also eliminates the
need for subclass shrinkage used in MDA.

The other dimensionality reduction method closely re-
lated to SDR-MM is kernel dimensionality reduction
(KDR) (Fukumizu et al., 2004) which also chooses
the lower dimensional subspace based on maximum
mutual information principle. SDR-MM differs from
KDR in the way in which it measures the mutual
information. While SDR-MM uses conditional like-
lihood, the KDR objective function is based on cross-
covariance operators on reproducing kernel Hilbert
spaces. A related method was proposed in (Torkkola
& Campbell, 2000) in which instead of using the Shan-
non mutual information, a Renyi-entropy based ex-
pression for mutual information is estimated.

Recently, several methods have been proposed for
probabilistic formulation of principal component anal-
ysis and its extension using the exponential family of
distributions (see for e.g., (Sajama & Orlitsky, 2004)
and the references therein). In SDR-MM also, we allow
the mixture components to be drawn from the expo-
nential family in order to allow the method to be suit-
able for the various data types. SDR-MM is an adap-
tation of the unsupervised method - semi-parametric
principal component analysis (SP-PCA) (Sajama &
Orlitsky, 2004) to the supervised scenario. We de-
scribe an simple and efficient EM-like algorithm for
model estimation which uses iteratively re-weighted
least squares in the maximization step. We present
classification experiments which show that SDR-MM
compares favorably to three related methods - pHd,
MDA and KDR. We also show visualization examples
for real-valued and binary data.

2. Model with Gaussian components

We are concerned with multi-class supervised prob-
lems where the feature vectors x lie in R

d and the class

labels y are drawn from the set {1, . . . ,M}. We are
given training data (x1, y1), . . . , (xn, yn), which are in-
dependent and identically distributed samples, drawn
from a probability distribution P (y)P (x|y). Each
class m is modelled by a mixture of cm number of
Gaussians N (x|θ, σI) (σ common to all classes). Let

c =
∑M

m=1 cm be total number of mixture compo-
nents over all classes, Π = {π1, . . . , πc} be the prior
over these components and for each k ∈ {1, . . . , c}, let
ψk(m) be given by

ψk(m) =

{

1 if mixture component k ∈ class m
0 otherwise

Let D(x,w) denote the squared Euclidean distance
between x and w. The distribution is given by

P (Y = m) =
c

∑

k=1

ψk(m)πk

P (x, Y = m) =
c

∑

k=1

πkψk(m)(2π)−d/2e−D(x,θk)/2σ2

.

In order to obtain low dimensional representation and
measure discriminative capability of feature transfor-
mations, we consider the constrained Gaussian mixture
model. The means of Gaussians from all classes are re-
stricted to lie in a lower (L) dimensional hyperplane in
R

d. We represent this constraint on mixture parame-
ters using L× d rotation matrix V and d-dimensional
displacement vector b. Each mean θk belonging to this
hyperplane can be represented by the L dimensional
vector ak

θk = akV + b.

We use the matrix A, whose k’th row is ak, to represent
the mixture component parameters. Hence the SDR-
MM model is parameterized by Θ = {Π, ψ,A, V, b}.
The assumption that the mixture components are
spherical Gaussians with common variance ensures
that we measure the discriminative capabilities of lin-
ear projection, since the direction perpendicular to the
plane (V, b) is irrelevant in any metric involving rela-
tive values of likelihoods P (x|θk). To see why this
is the case, consider xp, the point on the hyperplane
(V, b) closest to x. Now, P (x|θk) ∝ exp(−{D(x,xp)+
D(xp,θk)}/2σ2) and for a fixed x, the factor involv-
ing D(x,xp) is common to all θk’s on the hyperplane
(V, b) and hence cancels out.

Like LDA and MDA, there is an inherent classifier as-
sociated with the SDR-MM model trained for reducing
dimensions. Since each class is modelled by a mixture,
the distribution P (y = m|x) can be obtained using
Bayes rule and used to label any given test vector x.

Use of spherical Gaussians We have already
noted that use of fixed-variance spherical Gaussians
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corresponds to measuring discriminative capability of
a linear subspace when training samples are projected
onto it. That sphericality is not a restrictive assump-
tion follows from the universal approximation prop-
erty of RBF networks with spherical gaussian kernels
(Park & Sandberg, 1991). The idea is that spread of
a given class along the subspace (V, b) can be approxi-
mated by spread of Gaussian means belonging to that
class, assuming that a small enough variance is chosen.
Use of full covariance matrices makes it necessary to
regularize model estimation by penalizing the objec-
tive function. The assumption that all Gaussians have
common spherical covariance reduces the number of
parameters to be estimated by O(d2) and thereby im-
proves model generalization. Experimental results in
section 7 support these intuitive arguments.

The SDR-MM method is a soft equivalent of prototype
methods like LVQ and its probabilistic nature allows
data to simultaneously influence multiple prototypes -
attracting prototypes of the same class and repelling
prototypes belonging to a different class during MCL
estimation - thereby generating a large-margin like ef-
fect. This provides a simple alternative to subclass
shrinkage used in MDA (Hastie & Tibshirani, 1996).
There is a tradeoff between regularization and approx-
imation capability - smaller variance is better for ap-
proximation and larger variance for the regularization
effect described above.

3. The objective function

We propose using conditional likelihood of the training
data as the objective function for choosing appropriate
feature transformations, i.e., we pick the lower dimen-
sional space specified by (V, b) using MCL estimation.

(Vopt, bopt) = arg max
(V,b)

max
A,Π

n
∏

i=1

P (yi|xi,Θ). (1)

Use of this objective function can be motivated in
several ways. In a classification problem, we are in-
terested in finding a model which approximates the
observed empirical conditional distribution Pemp(y|x).
Maximizing conditional likelihood is equivalent to min-
imizing the KL divergence between Pemp(y|x) and the
model P(V,b)(y|x). Also, on a related note, MCL es-
timation is equivalent to maximum mutual informa-
tion estimation (Jebara & Pentland, 1998; Klautau
et al., 2003). Hence, this objective function is equiv-
alent to picking transformations that preserve maxi-
mum amount of the relevant information (under the
SDR-MM model) between distributions of x and y.

We present simple examples of projecting two-
dimensional samples onto a line to illustrate how MCL

class 1
class 2Best Discriminant  

    MCL Solution   

ML Solution 

Figure 1. Advantage of MCL : Each class is a mixture of
spherical Gaussians. ♦ and ∗ denote means of gaussian
components of classes 1 and 2 respectively. In this case the
subspace MDA finds is the same as the ML solution.

class 1
class 2

            
ML solution    

Best Discriminant  
   MCL solution    

Figure 2. Advantage of MCL : Two classes with different
covariance matrices. ♦ and ∗ denote means of gaussian
components of classes 1 and 2 respectively. In this case the
subspace MDA finds is the same as the MCL solution.

estimation extends the applicability of previously stud-
ies methods that are also, like SDR-MM, based on con-
strained mixture of Gaussians. Figure 1 shows a two
class example where each class is a mixture of four
spherical Gaussians. Projection using low-rank ML
estimation fully merges samples from the two classes
while MCL estimated mixture model is able to find
the best discriminant (see also (Jebara & Pentland,
1998)). Figure 2 shows an interesting example where
each of the two classes are generated by a single Gaus-
sian with almost the same mean, but they have very
different variance in one direction. If we used ML es-
timation with no constraints on the covariance ma-
trices to find a one-dimensional subspace, we would
get the ML solution subspace shown in figure 2, even
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if each class is allowed to be modelled by a mixture
of several Gaussians. This is because no model can
be better than the ‘true distribution’ in terms of like-
lihood of observed data (when data sample is large
enough). However, since MDA imposes common co-
variance constraints on all mixture components of all
classes, the MDA solution with three gaussian compo-
nents for each class, coincides with the MCL solution
in this case.

Simulation studies (Klautau et al., 2003) have found
that MCL classifiers can compete with and sometimes
outperform other discriminative and generative clas-
sifiers. For fixed (V, b), picking the Gaussian means
which maximize conditional likelihood is equivalent to
estimating a discriminative mixture classifier based on
data projected onto the subspace given by (V, b) (see
also section 2). Hence optimizing the function (1) is
equivalent to picking the best subspace for a discrimi-
native Gaussian mixture classifier.

4. Exponential family components

Using Gaussian means and constraining them to a
lower dimensional subspace of data space is equiv-
alent to using a ‘soft’ prototype method where the
prototypes are real valued and D(x,θ), the distance
between a point x and prototype θ, is Euclidean.
This Gaussian model may not appropriate for other
data types, for instance binary or integer data. The
Bernoulli distribution may be better for binary data
and Poisson for integer data. These three distribu-
tions, along with several others, belong to a family of
distributions known as the exponential family (Mc-
Cullagh & Nelder, 1983) and can be written in the
form

logP (x|θ) = logP0(x) + xθ −G(θ).

Here, θ is called the natural parameter and G(θ) is
a function that ensures that the probabilities sum to
one. Studies in the area of unsupervised dimension-
ality reduction of special data types, have found that
use of exponential family models yields better low di-
mensional representations (e.g., (Sajama & Orlitsky,
2004) and the references therein). Hence we extend the
model described in section 2 by using multivariate ex-
ponential family distributions for mixture components
in the place of fixed variance Gaussians,

logP (x|θ) =
d

∑

j=1

{logP0j(xj) + xjθj −Gj(θj)}, (2)

where xj and θj are the j’th components of x and θ.
Note that by using different distributions for differ-
ent components of the feature vector x, we can model
mixed data types.

5. Low dimensional representation

We discuss two of the several ways in which low dimen-
sional representations can be obtained using the model
Θ. The first method is to represent x by that point θ

on (V, b) that is closest according to the appropriate
Bregman (exponential family-based) distance. It can
be shown that there is a unique such θopt on the plane.
This representation is a generalization of the standard
Euclidean projection. The second method of low di-
mensional representation is based on Bayes rule. Each
feature vector x induces a posterior distribution over
the latent domain P (θi|x) = πiP (x|θi)/P (x). Under
the SDR-MM model, all the information in x about y
is contained in this posterior distribution since y and
x are independent when conditioned upon the latent
variable θ. Hence x can be represented by a suitable
function of this posterior and we choose to use the
mean. This representation has been used successfully
by several probabilistic methods in the unsupervised
case, to get meaningful low dimensional views.

6. Algorithm

Several iterative algorithms have been proposed for
MCL estimation of mixture models, see for example
(Jebara & Pentland, 1998; Klautau et al., 2003). The
common thread in these algorithms is that each iter-
ation involves evaluating a tight lower bound which
touches the objective function at the current parame-
ter value. Model parameters are then updated by max-
imizing this lower bound. This technique was called
bound maximization in (Jebara & Pentland, 1998)
and is the basis of many iterative algorithms including
the expectation maximization (EM) algorithm.

We use the idea of bound maximization and derive
an algorithm for MCL estimation under low rank con-
straint on mixture component parameters Θ. Let Θt

and Θt+1 denote the current and updated parameter
values at iteration t. The change in conditional log-
likelihood at iteration t can be written as

∆l =

n
∑

i=1

{logP (yi|xi,Θ
t+1) − logP (yi|xi,Θ

t)}

≥
n

∑

i=1

c
∑

k=1

ẑik logP (θk,xi, yi|Θ
t+1)

−
n

∑

i=1

ρiP (xi|Θ
t+1) + constant,

where ẑik =
P (θk,xi, yi|Θ

t)
∑c

k′=1 P (θk′ ,xi, yi|Θt)
& ρi =

1

P (xi|Θt)
.

Here the first term was lower bounded using Jensen’s
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inequality (similar to the EM algorithm) and the sec-
ond term using logw ≤ w − 1. At each iteration, we
compute the lower bound by computing ẑik and ρi for
i = 1, . . . , n and k = 1, . . . , c. The lower bound is then
optimized by alternately maximizing over each of Π,
A, V and b while holding the rest of the parameters
constant.

The lower bound can be written as (ignoring constants
since they do not affect the optimization steps)

∆l =
∑

i

∑

k

ẑik log πk +
∑

i

∑

k

ẑik logψk(yi) (3)

+
∑

i

∑

k

ẑik logP (xi|θk) −
∑

i

∑

k

ρiπkP (xi|θk).

Updating Π : Πt+1 is obtained by maximizing the
Lagrangian (formed using terms in ∆l involving πk)

L =

c
∑

k=1

{c1k log πk − c2kπk} + λ(

c
∑

k=1

πk − 1),

where c1k =
∑n

i=1 ẑik, c2k =
∑n

i=1 ρiP (xi|θk) and λ
is a lagrange multiplier used to impose the constraint
that the latent distribution sums to one. This opti-
mization is a little more complicated than its coun-
terpart in the EM algorithm for ML estimation since
we have both linear and logarithmic terms. Differen-
tiating L and setting the derivative to zero, we get
πk = c1k/(c2k − λ). We need to find λ that satisfies
f(λ) =

∑c
k=1 c1k/(c2k−λ) = 1. There is no explicit so-

lution for this equation, but it is easy to verify that at
λ0 = mink(c2k − c1k), f(λ0) > 1 and that as λ→ −∞,
f(λ) → 0. Moreover, f(λ) is continuous and monotone
in the region [−∞, λ0] implying that there is a unique
λopt such that f(λopt) = 1, which can be found using
bisection line search.

Optimizing A, V and b : For optimizing A and
V, we use an iterative weighted least squares method
similar to that used in fitting generalized linear mod-
els (McCullagh & Nelder, 1983), i.e., we apply the
Newton-Raphson procedure to the equations obtained
by setting the derivative of ∆l to zero. Upon taking
the first and second derivatives with respect to the
components of the matrix A, it turns out that each
row can be updated independently of the others in a
given iteration. This decoupling is convenient since it
means that updating the parameters involves smaller
matrix operations. Similarly, we find that each column
of V and each component of b can be updated inde-
pendently. Update equations for A and V are given
here, and can be derived similarly for b (not included
here because of space constraints). ∆l depends on A,
V and b only through the last two terms in equation

3. Hence, ignoring constants, we want to maximize

c
∑

k=1

d
∑

j=1

(θkj x̃kj −G(θkj)z̃k) −
n

∑

i=1

c
∑

k=1

ρiπkP (xi|θk),

(4)
where, x̃kj =

∑n
i=1 ẑikxij and z̃k =

∑n
i=1 ẑik and

P (xi|θk) is as defined before in equation 2.

Each row of A, ar is updated by adding δar which is
calculated using (V ΩrV

t)δar = GRr, where the d× d
matrix Ωr and the L× 1 matrix GRr are given by

[Ωr]jj′ = {z̃r −
n

∑

i=1

ρiπrP (xi|θr)}
∂g(θrj)

∂θrj
δ(j = j′)

+
n

∑

i=1

ρiπrP (xi|θr)(xij′ − g(θrj′))(xij − g(θrj))

and

[GRr]s =

d
∑

j=1

vsj x̃rj − z̃rg(θrj)

−
n

∑

i=1

ρiπrP (xi|θr)(xij − g(θrj)).

Each column of the matrix V , vs is updated by adding
δvs obtained by solving (AtΩsA)δvs = GRs, where
the c × c diagonal matrix Ωs, and the L × 1 matrix
GRs are given by,

[Ωs]kk = {z̃k −
n

∑

i=1

ρiπkP (xi|θk)}
∂g(θks)

∂θks

+

n
∑

i=1

ρiπkP (xi|θk)(xis − g(θks))
2

and

[GRs]r =

c
∑

k′=1

ak′r{x̃k′s − z̃k′g(θk′s)

+

n
∑

i=1

ρiπk′P (xi|θk′)(xis − g(θk′s).}

Note that using the Newton-Raphson method does not
guarantee monotone increase in the value of L̃. Mono-
tonicity can be enforced using standard optimization
procedures like line search or the trust regions method.

Computational complexity : Time taken for each
iteration of this algorithm is O(cdnL2). Computing ẑik

and ρi involve computing P (xi|θk) which is expensive
and is a common problem faced in maximum likelihood
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estimation and in training of RBF networks. (Omo-
hundro, 1987) gives a procedure for speeding up this
procedure using the k-d tree data structure by identi-
fying relevant prototypes (for each x) thereby avoiding
unnecessary computation.

7. Experiments

We experimented with the Gaussian mixture model on
four real-valued datasets and with the Bernoulli mix-
ture model on a binary set. As noted in section 2,
for the Gaussian mixture model, an appropriate vari-
ance should be chosen to achieve the right tradeoff
between regularization and approximation capability.
Also, the value of P (xi|θk) can become very small and
lead to computational difficulties if the variance is cho-
sen to be too small. In the experiments reported here,
we used fixed variance Gaussians and the data was
sphered. The variance was selected by trying a few
values ranging between 0.5 and 2 and choosing the
variance that maximized conditional log-likelihood (a
part of the training set was used for validation). As
with most iterative optimization methods, the model
estimated by the SDR-MM algorithm depends on pa-
rameter initialization. We tried a few different random
starts and chose the model which gives highest condi-
tional log-likelihood on training data (validation was
not used for this purpose).

7.1. Classification results

Table 1. Description of data sets for the classification prob-
lem.

Data set data training test
dimension set size set size

Heart disease 13 149 148
Ionosphere 34 151 200

Breast cancer 30 200 369
Waveform 21 300 500

We give classification results comparing SDR-MM
with KDR, MDA and pHd. We modified the mat-
lab package of Kernel ICA (Bach, 2002) to obtain
the KDR results. The variance parameter for KDR
was gradually decreased (between iterations) to two
as suggested in (Fukumizu et al., 2004). For the ex-
periments with MDA and pHd, we used the mda and
dr packages in the R language. We used four data sets
from the UCI machine learning repository, viz. Heart
disease, Ionosphere, Breast cancer and waveform data
sets (summarized in Table 1).

Table 2 shows classification results obtained by first
projecting data using the various methods and then

Table 2. Accuracies for best SVM classifiers associated
with projection onto various lower dimensions.

Data set L pHd KDR MDA SDR-MM

Heart 1 52.37 80.68 77.84 80.81
3 68.92 77.43 77.97 80.95
5 73.31 76.82 80.74 81.49

Ionosphere 1 68.80 90.28 75.75 87.14
3 82.75 95.28 86.9 89.71
5 87.65 94.88 88.85 91.14

Breast 1 73.88 93.82 92.55 95.50
3 84.23 90.92 93.36 95.83
5 90.41 88.59 93.88 95.85

Waveform 1 - 59.32 60.58 60.98
2 - 82.80 84.40 85.16
4 61.6 79.08 83.78 84.36

Table 3. Calculated t-values for comparison between var-
ious dimension reduction methods followed by SVM clas-
sifier. Paired samples test of significance for 10-fold cross
validation is significant with probability 0.05/0.01/0.001
if t-value is higher than 2.23/3.17/4.59, respectively. Posi-
tive/negative t-value means that the first/second classifier,
respectively, is better than the other.

Data set L SDR-MM SDR-MM KDR
vs KDR vs MDA vs MDA

Heart 1 0.13 0.90 0.70
3 2.16 0.94 -0.17
5 4.60 0.91 -2.82

Ionosphere 1 -1.62 3.44 6.06
3 -3.34 1.94 7.37
5 -2.78 1.18 7.06

Breast 1 2.50 4.52 1.69
3 4.12 4.00 -1.68
5 5.23 2.44 -3.67

Waveform 1 2.11 0.47 -1.40
2 3.58 1.69 -4.18
4 6.53 1.08 -6.06

using SVM to classify the projected data. For MDA
and SDR-MM, we obtained results similar to SVM us-
ing the inherent classifier, that uses the probability
densities estimated in the process of finding the lower
dimensional space (not shown here for lack of space).
The classification rates shown in the table are averaged
10-fold cross validation results. The t-values of the
paired significance tests comparing SDR-MM, MDA
and KDR are given in Table 3. We found that SDR-
MM performs significantly better than KDR on all of
the data sets except one - the Ionosphere data. SDR-
MM also did better than MDA consistently, but the
significance t-values were not (on an average) as high
as the comparison with KDR.
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7.2. Visualization - Gaussian case
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Figure 3. Some two dimensional views of waveform dataset
projected onto the four basis vectors obtained using SDR-
MM
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Figure 4. Some two dimensional views of waveform dataset
projected onto the four basis vectors obtained using KDR
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Figure 5. Some two dimensional views of waveform dataset
projected onto the four basis vectors obtained using MDA

For the visualization experiment we used the Wave-
form data set. We trained a model with 30 Gaussian
components (10 for each class) and with mean param-
eters constrained to a four-dimensional subspace. The
estimated matrix V was processed using the Gram-
Schmidt procedure to obtain orthogonal basis for the
lower dimensional subspace and the training data was
projected onto this subspace. Figure 3 shows two
views of this four-dimensional projected set. The
first two coordinates were sufficient to discriminate
between the three classes since the two-dimensional
model achieves an error rate close to the minimum
possible (Bayes) error (see Table 2). However, we
see that the third coordinate distinguishes one class
from the other two, indicating that maximum mutual
information based methods may be able to discover

more discriminating information than what is needed
for classification. KDR projection gave similar lower
dimensional views, but with greater overlap among the
three classes (figure 4). In the corresponding projec-
tions obtained using MDA, shown in figure 5, the third
and fourth discriminants do not significantly discrim-
inate between the classes.

7.3. Visualization - Binary case

We demonstrate the binary data visualization capa-
bility of SDR-MM with Bernoulli conditional distribu-
tion. While performing the experiments we found that
the algorithm was much more likely to get stuck in lo-
cal minima when the Bernoulli mixture components
are used than in the Gaussian case. The visualiza-
tion shown in this section was obtained by running
the SDR-MM algorithm several times and picking the
best view. For this purpose, we use the ICU data set
(Lemeshow et al., 1988) which consists of a sample
of 200 subjects who were part of a study on survival
of patients following admission to an adult intensive
care unit (ICU). We picked 190 patients and 16 binary
features from this data-set.

The goal is to extract and understand features that
predict whether a patient will leave the ICU alive. The
features considered include presence of coma, cancer,
fracture and infection, the patient’s gender and race
and whether the admission to ICU was elective or due
to an emergency. The two dimensional projection ob-
tained using MCL estimation of constrained Bernoulli
mixture model is shown in Fig. 6. We examined the
basis vectors of the lower-dimensional parameter space
obtained using SDR-MM, and found that the features
that change most significantly along the horizontal di-
rection are the type of admission (elective versus emer-
gency) and whether a fracture was involved. Along the
vertical direction, the feature with maximum change
is presence of cancer.

The projected data can be visually divided into five
clusters (figure 6). Four of the clusters, numbered 1,
2, 4 and 5, were relatively ‘pure’, i.e., consist of either
people who left the ICU alive or those who did not,
while cluster 3 consists of both types of people. Some
conclusions that can be readily drawn from this are
that people who elected to join ICU to receive medical
attention survived with high probability. Among those
who joined the ICU because of an emergency, those
who joined because of a fracture survived with high
probability (cluster 1), though some of these (presum-
ably with severe damage) did not survive. The type of
service at admission and type of admission are highly
correlated for this cluster.
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Figure 6. Two dimensional representation of binary data
from the ICU data set : patients who left the ICU alive
are shown by ‘+’ and the patients who did not by ‘◦’.

8. Conclusion

Semi-parametric PCA is a recently proposed prob-
abilistic alternative to principal component analysis
based on maximum likelihood estimation of latent vari-
able models. In this paper, we argued that use of
maximum conditional likelihood estimation is a natu-
ral way to extend this method to the supervised case.
Experiments demonstrate the potential of this method
to learn discriminating transformations and for super-
vised visualization of high dimensional data.

There are many promising directions for future work.
Typically, supervised multi-class dimension reduction
experiments involve learning directions which discrim-
inate among all classes simultaneously. Finding pro-
jections suitable for separating pairs (or more gener-
ally subsets) of classes can give better discriminative
directions. Outputs from these low-complexity clas-
sifiers can then be combined to obtain full classifiers
with good performance. Another interesting extension
would be to use mixture modelling approach with a
suitable objective function for semi-supervised dimen-
sionality reduction.
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