Sparse Cooperative Q-learning

Jelle R. Kok
Nikos Vlassis

JELLEKOK@QSCIENCE.UVA.NL
VLASSISQSCIENCE.UVA.NL

Informatics Institute, Faculty of Science, University of Amsterdam, The Netherlands

Abstract

Learning in multiagent systems suffers from
the fact that both the state and the action
space scale exponentially with the number of
agents. In this paper we are interested in
using Q-learning to learn the coordinated ac-
tions of a group of cooperative agents, us-
ing a sparse representation of the joint state-
action space of the agents. We first examine
a compact representation in which the agents
need to explicitly coordinate their actions
only in a predefined set of states. Next, we
use a coordination-graph approach in which
we represent the Q-values by value rules that
specify the coordination dependencies of the
agents at particular states. We show how Q-
learning can be efficiently applied to learn a
coordinated policy for the agents in the above
framework. We demonstrate the proposed
method on the predator-prey domain, and we
compare it with other related multiagent Q-
learning methods.

1. Introduction

A multiagent system (MAS) consists of a group of
agents that can potentially interact with each other
(Weiss, 1999; Vlassis, 2003). In this paper, we are
interested in fully cooperative multiagent systems in
which the agents have to learn to optimize a global
performance measure. One of the key problems in such
systems is the problem of coordination: how to ensure
that the individual decisions of the agents result in
jointly optimal decisions for the group.

Reinforcement learning (RL) techniques (Sutton &
Barto, 1998) have been applied successfully in many
single-agent systems for learning the policy of an agent

Appearing in Proceedings of the 21°% International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

in uncertain environments. In principle, it is pos-
sible to treat a multiagent system as a ‘big’ single
agent and learn the optimal joint policy using stan-
dard single-agent reinforcement learning techniques.
However, both the state and action space scale ex-
ponentially with the number of agents, rendering this
approach infeasible for most problems. Alternatively,
we can let each agent learn its policy independently
of the other agents, but then the transition model de-
pends on the policy of the other learning agents, which
may result in oscillatory behavior.

On the other hand, in many problems the agents only
need to coordinate their actions in few states (e.g., two
cleaning robots that want to clean the same room),
while in the rest of the states the agents can act in-
dependently. Even if these ‘coordinated’ states are
known in advance, it is not a priori clear how the
agents can learn to act cooperatively in these states.
In this paper we describe a multiagent Q-learning tech-
nique, called Sparse Cooperative Q-learning, that al-
lows a group of agents to learn how to jointly solve a
task when the global coordination requirements of the
system (but not the particular action choices of the
agents) are known beforehand.

We first examine a compact representation in which
the agents learn to take joint actions in a predefined
set of states. In all other (uncoordinated) states, we
let the agents learn independently. Then we generalize
this approach by using a context-specific coordination
graph (Guestrin et al., 2002b) to specify the coordina-
tion dependencies of subsets of agents according to the
current context (dynamically). The proposed frame-
work allows for a sparse representation of the joint
state-action space of the agents, resulting in large com-
putational savings.

We demonstrate the proposed technique on the
‘predator-prey’ domain, a popular multiagent problem
in which a number of predator agents try to capture
a poor prey. Our method achieves a good trade-off
between speed and solution quality.

2. MDPs and Q-learning

In this section, we review the Markov Decision Pro-
cess (MDP) framework. An observable MDP is a tuple
(S, A, T, R) where S is a finite set of world states, A is
a set of actions, T': S x A x S — [0,1] is the Marko-
vian transition function that describes the probabil-
ity p(s’|s,a) of ending up in state s’ when perform-
ing action a in state s, and R : S x A — R is a
reward function that returns the reward R(s,a) ob-
tained after taking action a in state s. An agent’s
policy is defined as a mapping «# : S — A. The
objective is to find an optimal policy 7* that maxi-
mizes the expected discounted future reward U*(s) =
max, E [y ;2,7 R(s¢)|m, so = s] for each state s. The
expectation operator F[| averages over reward and
stochastic transitions and «y € [0, 1) is the discount fac-
tor. We can also represent this using Q-values which
store the expected discounted future reward for each
state s and possible action a:

Q" (s,a) = R(s,0)+7 3 pls'ls, a) max Q" (s',). (1)

S

The optimal policy for a state s is the action
arg max, Q*(s,a) that maximizes the expected future
discounted reward.

Reinforcement learning (RL) (Sutton & Barto, 1998)
can be applied to estimate Q*(s,a). Q-learning is a
widely used learning method when the transition and
reward model are unavailable. This method starts
with an initial estimate Q(s,a) for each state-action
pair. When an exploration action a is taken in state s,
reward R(s, a) is received and next state s’ is observed,
the corresponding Q-value is updated by

Q(s,a) := Q(s,a)+a[R(s,a)+ymax Q(s',a')—Q(s, a)]
a
(2)
where « € (0,1) is an appropriate learning rate. Un-
der conditions, Q-learning is known to converge to the
optimal Q*(s,a) (Watkins & Dayan, 1992).

3. Multiagent Q-learning

The framework discussed in the previous section only
involves single agents. In this work, we are interested
in systems in which multiple agents, each with their
own set of actions, have to collaboratively solve a task.
A collaborative multiagent MDP (Guestrin, 2003) ex-
tends the single agent MDP framework to include mul-
tiple agents whose joint action impacts the state tran-
sition and the received reward. Now, the transition
model T : S x A x S — [0,1] represents the proba-
bility p(s'|s,a) the system will move from state s to
s’ after performing the joint action a € A = x?,A;

and R; : S x A — IR is the reward function that re-
turns the reward R;(s,a) for agent i after the joint
action a is taken in state s. As global reward function
R(s,a) =Y, Ri(s,a) we take the sum of all individ-
ual rewards received by the n agents. This framework
differs from a stochastic game (Shapley, 1953) in that
each agent wants to maximize social welfare (sum of
all payoffs) instead of its own payoff.

Within this framework different choices can be made
which affect the problem description and possible solu-
tion concepts, e.g., whether the agents are allowed to
communicate, whether they observe the selected joint
action, whether they perceive the individual rewards
of the other agents, etc. In our case we assume that the
agents are allowed to communicate and thus are able
to share individual actions and rewards. Before we dis-
cuss our approach, we first describe two other learning
methods for environments with multiple agents.

3.1. MDP Learners

In principle, a collaborative multiagent MDP can be
regarded as one large single agent in which each joint
action is represented as a single action. The optimal
Q-values for the joint actions can then be learned us-
ing standard single-agent Q-learning. In order to apply
this MDP learners approach a central controller mod-
els the complete MDP and communicates to each agent
its individual action, or all agents model the complete
MDP separately and select the individual action that
corresponds to their own identity. In the latter case, no
communication is needed between the agents but they
all have to observe the joint action and all individual
rewards. Moreover, the problem of exploration can be
solved by using the same random number generator
(and the same seed) for all agents (Vlassis, 2003). Al-
though this approach leads to the optimal solution, it
is infeasible for problems with many agents since the
joint action space, which is exponential in the number
of agents, becomes intractable.

3.2. Independent Learners

At the other extreme, we have the independent learn-
ers (IL) approach (Claus & Boutilier, 1998) in which
the agents ignore the actions and rewards of the other
agents in the system, and learn their strategies in-
dependently. The standard convergence proof for Q-
learning does not hold in this case, since the transition
model depends on the unknown policy of the other
learning agents. Despite the lack of guaranteed con-
vergence, this method has been applied successfully in
multiple cases (Tan, 1993; Sen et al., 1994).

4. Context-Specific Q-learning

In many problems, agents only have to coordinate their
actions in a specific context (Guestrin et al., 2002b).
For example, two cleaning robots only have to take
care that they do not obstruct each other when they
are cleaning the same room. When they work in two
different rooms, they can work independently.

In this section, we describe a reinforcement learning
method which explicitly models these types of context-
specific coordination requirements. The main idea is
to learn joint action values only in those states where
the agents actually need to coordinate their actions.
We create a sparse representation of the joint state-
action space by specifying in which states the agents do
(and in which they do not) have to coordinate their ac-
tions. During learning the agents apply the IL method
in the uncoordinated states and the MDP learners ap-
proach in the coordinated states. Since in practical
problems the agents typically need to coordinate their
actions only in few states, this framework allows for
a sparse representation of the complete action space,
resulting in large computational savings.

Because of the distinction in action types for different
states, we also have to distinguish between different
representations for the QQ-values. Each agent i main-
tains a single-action value table Q;(s,a;) for the un-
coordinated states, and one joint action value table
Q(s,a) for the coordinated states. In the coordinated
states the global Q-value Q(s, a) directly relates to the
shared joint Q-table. In the uncoordinated states, we
assume that the global Q-value is the sum of all indi-
vidual Q-values:

Q(s,a) = ZQZ‘(&%)- (3)

When the agents observe a state transition, values
from the different Q-tables are combined in order to
update the Q-values.

There are four different situations that must be taken
into account. When moving between two coordinated
or between two uncoordinated states, we respectively
apply the MDP Learners and IL approach. In the case
that the agents move from a coordinated state s to an
uncoordinated state s’ we back up the individual Q-
values to the joint Q-value by

Q(S, a) = (1 - a)Q(s, a) +
ay’ [Ri(saa) + 7y max QZ-(S’,GQ)]. (4)
i=1 i

Conversely, when moving from an uncoordinated state

A, s) Qu1(s',a1) LB
Ay | Qlsia) Ba(sa) Q2(5', az) Rale'.a) Q(s",a)
As R3(s,a) Qs+ a3) Rs(s,a)

Figure 1. Graphical representation of the Q-tables in the
case of three agents A1, Az, and A3. State s and s’ are co-
ordinated states, while state s’ is an uncoordinated state.

s’ to a coordinated state s’ we back up the joint Q-
value to the different individual Q-values by

Qi(s',a;) = (1 —a)Qi(s',a;) +
a[Ri(s',a;) + 7% max Q(s",a’)]. (5)

That is, in this case each agent is rewarded with the
same fraction of the expected future discounted reward
from the resulting coordinated state. This essentially
implies that each agent contributes equally to the co-
ordination.

Fig. 1 shows a graphical representation of the tran-
sition between three states for a problem involving
three agents. In state s the agents have to coordi-
nate their actions and use the shared Q-table to de-
termine the joint action. After taking the joint action
a and observing the transition to the uncoordinated
state ', the joint action Q-value Q(s,a) is updated
using Eq. (4). Similarly, in s’ each agent ¢ chooses
its action independently and after moving to state s’
updates its individual Q-value @; using Eq. (5).

In terms of implementation, the shared Q-table can be
either stored centrally (and the agents should have ac-
cess to this shared resource) or updated identically by
all individual agents. Note that in the latter case the
agents rely on (strong) common knowledge assump-
tions about the observed actions and rewards of the
other agents. Furthermore, all agents have to coordi-
nate their actions in a coordinated state. In the re-
mainder of this paper, we will discuss a coordination-
graph approach which is a generalization of the de-
scribed algorithm in this section. In that framework
the coordination requirements are specified over sub-
sets of agents and the global Q-value is distributed
among the different agents. Before we discuss this
generalized approach, we first review the notion of a
context-specific coordination graph.

5. Context-Specific Coordination
Graphs

A context-specific coordination graph (CG) represents
a dynamic (context-dependent) set of coordination re-
quirements of a multiagent system (Guestrin et al.,
2002b). If Ay,..., A, is a group of agents, then a
node of the CG in a given context represents an agent
A;, while an edge defines a dependency between two
agents. Only interconnected agents have to coordi-
nate their actions at any time step. For example, the
left graph in Fig. 2 shows a CG for a 4-agent prob-
lem in which agent A3 has to coordinate with Ay, Ay
has to coordinate with As, and A; has to coordinate
with both Ay and As. If the global payoff function is
decomposed as a sum of local payoff functions, a CG
replaces a global coordination problem by a number of
local coordination problems that involve fewer agents,
which can be solved in a distributed manner using a
message passing scheme.

In (Guestrin et al., 2002b) the global payoff function is
distributed among the agents using a set of value rules.
These are propositional rules in the form (p;c : v),
where ¢ (the context) is an element from the set of all
possible combinations of the state and action variables
ce C CSUA, and p(c) = v € R is a payoff that is
added to the global payoff when ¢ holds. By definition,
two agents are neighbors in the CG if and only if there
is a value rule (p;c : v) that contains the actions of
these two agents in c¢. Clearly, the set of value rules
form a sparse representation of the global payoff func-
tion since not all state and action combinations have
to be defined.

Fig. 2 shows an example of a context-specific CG,
where for simplicity all actions and state variables are
assumed binary!'. In the left graph we show the ini-
tial CG together with the corresponding set of value
rules. Note that agents involved in the same rules are
neighbors in the graph. In the center we show how the
value rules, and therefore the CG, are updated after
the agents condition on the current context (the state
s = true). Based on this information about state s,
rule ps is irrelevant and is removed. As a consequence,
the optimal joint action is independent of A4 and its
edge is deleted from the graph as shown in the center
of Fig. 2.

In order to compute the optimal joint action (with
maximum total payoff) in a CG, a variable elimination
algorithm can be used which we briefly illustrate in the
example of Fig. 2. After the agents have conditioned

I Action a1 corresponds to a1 = true and action a@; to
= false.

AENC N A
4

Ay
(p1;a1 Nas ANs:4) (p1;a1 ANas :4) {(p2;a1 ATz : 5)
(p2;a1 NGz A's : 5) (p2;a1 N2 : 5) (ps;as :2)
(ps;az As 12) (psiaz 2) {ps; az :5)
(pa;as Naz N's : 5) (pa;as Naz :5) (pr;az Aai :4)
(ps;a3 A as A3 : 10)

Figure 2. Initial CG (left), after conditioning on the con-
text s = true (center), and after elimination of Az (right).

on the context (center figure), the agents are elimi-
nated from the graph one by one. Let us assume that
we first eliminate A3. This agent first collects all rules
in which it is involved, these are (a1 AG3 : 4)(asAaz : 5).
Next, for all possible actions of A; and As, agent Ag
determines its conditional strategy, in this case equal
to {as : 5)(a; Ady : 4), and is then eliminated from the
graph. The algorithm continues with agent As which
computes its conditional strategy (ay : 11)(@; : 5), and
is then also eliminated. Finally, A; is the last agent left
and fixes its action to a;. Now a second pass in the re-
verse order is performed, where each agent distributes
its strategy to its neighbors, who then determine their
final strategy. This results in the optimal joint action
{a1,@,as} with a global payoff of 11.

6. Sparse Cooperative Q-learning

The method discussed in section 4 defined a state ei-
ther as a coordinated state in which all agents coor-
dinate their actions, or as an uncoordinated state in
which all agents act independently. However, in many
situations only some of the agents have to coordinate
their actions. In this section we describe Sparse Co-
operative Q-learning which allows a group of agents to
learn how to coordinate based on a predefined coordi-
nation structure that can differ between states.

As in (Guestrin et al., 2002b) we begin by distributing
the global Q-value among the different agents. Every
agent i is associated with a local value function Q;(s, a)
which only depends on a subset of all possible state and
action variables. The global Q-value equals the sum
of the local Q-values of all n agents:

a) = ZQi(S»a)' (6)
i=1

Suppose that an exploration joint action a is taken

from state s, each agent receives reward R;(s,a), and
next state s’ is observed. Based on the decomposition
(6) the global Q-learning update rule now reads

ZQi(s,a) = ZQi(s,a) + a[ZRi(s,a)-F
i=1 i=1 i=1
ZQZ s,a)]. (7)

’ymaxQ s’ a)

Using the variable elimination algorithm discussed in
section 5, the agents can compute the optimal joint
action a* = argmax, Q(s’,a’) in state s’, and from
this compute their contribution Q;(s’,a*) to the total
payoff Q(s’,a*), as we will show next. This allows
the above update to be decomposed locally for each
agent 4:

Qi(sv a‘) = Qi(sﬂ a)+a[Ri(S7 CL)+’VQi(S/7 a‘*)_Qi(sv a)}

(8)
We still have to discuss how the local Q-functions are
represented. In our notation, we use the value rule
representation of section 5 to specify the coordination
requirements between the agents for a specific state.
This is a much richer representation than the IL-MDP
variants since it allows us to represent all possible de-
pendencies between the agents in a context-specific
manner. Every Q;(s,a) depends on those value rules
that are consistent with the given state-action pair
(s,a) and in which agent i is involved:

Qu(s.a) = 5)

- Uz
j J

where n; is the number of agents (including agent i)
involved in rule pj.

Such a representation for Q;(s, a) can be regarded as a
linear expansion into a set of basis functions pz-, each of
them peaked on a specific state-action context which
may potentially involve many agents. The ‘weights’ of
these basis functions (the rules’ values) can then be
updated as follows:

pi(s.) = py(s,0) + Y [Rils,0)+
1Qi(s',a") — Qils,a)] (10)

where we add the contribution of each agent involved
in the rule.

As an example, assume we have the following set of

As Qs(s,a,a3) | Bs(s,a)

Figure 3. Example representation of the Q components of
three agents for a transition from state s to state s’.

value rules:

pr;ar A\s T U1

paiaiANag As : Vg

)
)
p3;ay ANag A s :v3)
Pa; ay Nas NS D Ug)

)

Ps; a2 Nas A\'s I U

(
(
(
(
(
(pe;as N\ s : Ug)

Furthermore, assume that a = {a1, as,as} is the per-
formed joint action in state s and a* = {a1,a2,as} is
the optimal joint action found with the variable elimi-
nation algorithm in state s’. After conditioning on the
context, the rules p; and ps apply in state s, whereas
the rules p3 and pg apply in state s’. This is graph-
ically depicted in Fig. 3. Next, we use Eq. (10) to
update the value rules p; and ps in state s as follows:

V3 v
p1(s,a) = v1 + a[Ri(s,q) +77 - Tl]
p5(s,a) =vs + a[Ra(s,a) —5—7%3 — %4_

Us
Rs(s,a) +7=2 L

Note that in order to update ps we have used
the (discounted) Q-values of Qs(s’,a*) = v3/2 and
Qs(s’',a*) = vg/1. Furthermore, the component Q5 in
state s’ is based on a coordinated action of agent A
with agent A; (rule p3), whereas in state s agent A
has to coordinate with agent Az (rule ps).

7. Experiments

In this section, we apply our method to a predator-
prey problem in which the goal of the predators is to
capture a prey as fast as possible in a discrete grid-
like world (Kok & Vlassis, 2003). We concentrate on

A

Figure 4. Possible capture position for two predators.

a coordination problem in which two predators in a
10x 10 toroidal grid have to capture a single prey. Each
agent can move to one of its adjacent cells or remain on
its current position. The prey is captured when both
predators are located in an adjacent cell to the prey
and only one of the two agents moves to the location
of the prey. A possible capture situation is depicted
in Fig. 4. When the two predators move to the same
cell or a predator moves to the prey position without
a nearby predator, they are penalized and placed on
random positions on the field. The policy of the prey is
fixed: it stays on its current position with a probability
of 0.2, in all other cases it moves to one of its free
adjacent cells with uniform probability.

The complete state-action space for this problem con-
sists of all combinations of the two predator positions
relative to the prey and the joint action of the two
predators (almost 250,000 states). However, in many
of these states the predators do not have to coordinate
their actions. Therefore, we first initialize each preda-
tor with a set of individual value rules which do not
include the state and action of the other predator. An
example rule is defined as
(p1 ; prey(—=3,-3) A a; = move none : 75).

The payoff of all value rules are initialized with a value
of 75 which corresponds to the maximal reward at the
end of an episode. This ensures that the predators
explore all possible action combinations sufficiently.
Next, the specific coordination requirements between
the two predators are added. Since the predators only
have to coordinate their actions when they are close
to each other, we add extra value rules, depending on
the joint action, for the following situations:

e the (Manhattan) distance to the other predator is
smaller or equal than two cells

e both predators are within a distance of two cells
to the prey

The value rule for which the prey is captured in the

situation of Fig. 4 looks as

1

(p3 A pred(l,—1) A

as = move_west : 75)

prey(0, —1)
a; = move_none A

This results in the generation of 31,695 value rules for
the first predator (31,200 for the 1,248 coordinated
states and 495 for the 99 uncoordinated states?). The
second predator holds only a set of 495 rules for the
uncoordinated states since its action is based on the
rules from the other predator in the coordinated states.

During learning we use Eq. (10) to update the pay-
offs of the rules. Each predator i receives a reward
R; = 37.5 when it helps to capture the prey and a
negative reward of —50.0 when it collides with another
predator. When an agent moves to the prey without
support the reward is —5.0. In all other cases the re-
ward is —0.5. We use an e-greedy exploration step of
0.2, a learning rate « of 0.3, and a discount factor ~y
of 0.9.

We compare our method to the two Q-learning meth-
ods mentioned in section 2. In case of the indepen-
dent learners, each Q-value is derived from a state that
consists of both the position of the prey and the other
predator and one of the five possible actions. This cor-
responds to 48,510 (= 99 - 98 - 5) different state-action
pairs for each agent. For the MDP Learners we model
the system as a complete MDP with the joint action
represented as a single action. In this case, the number
of state action-pairs equals 242, 550 (= 99 - 98 - 52).

Fig. 5 shows the capture times for the learned policy
during the first 500,000 episodes for the different meth-
ods. The results are generated by running the cur-
rent learned policy after each interval of 500 episodes
five times on a fixed set of 100 starting configurations.
During these 500 test episodes no exploration actions
were performed. This was repeated for 10 different
runs. The 100 starting configurations were selected
randomly beforehand and were used during all 10 runs.

Both the independent learners and our proposed
method learn quickly in the beginning with respect
to the MDP learners since learning is based on fewer
state-action pairs. However, the independent learners
do not converge to a single policy but keep oscillating.
This is caused by the fact that they do not take the
action of the other agent into account. When both
predators are located next to the prey and one preda-
tor moves to the prey position, this predator is not able
to distinguish between the situation where the other

2Note that creating value rules based on the full state
information, and only decomposing the action space, would
result in 8,454 (=99 - 98 — 1, 248) uncoordinated states

251y, ;
1 —— MDP Learners
: -~ Independent Learners
i Manual Policy
i —— Sparse Cooperative Q-learning
y o
\.\.,“ ; | :\
I Py
201 M J: | ‘ i
° W, £ ”:‘ | | i
_g I | h\;\ Wh \Rl ! 4 L |
) N 'ﬂ ‘\!IJJ L J \ . l‘ 1 r”\ (“V N |
5 4 \‘ ”r‘,\ Y om ‘ ¥ | oy o ‘” ‘l‘ \\ i
°a W "\”tﬂ'hr‘ il AN um ; “H 1
% iy h i m 1‘“"_“\"“ iy év ﬂ‘m ‘,I"h‘v". q“ \,) “‘”‘n” ,J,,w I
151
10
0 1 2 3 4 5
episode ¥ 10°

Figure 5. Capture times for the learned policy for the four
different methods during the first 500,000 episodes. Results
are averaged over 10 runs.

predator remains on its current position or performs
one of its other actions (e.g., an exploration action).
In the first case a positive reward is returned, while
in the second case a large negative reward is received.
However, in both situations the same Q-value is up-
dated.

These coordination dependencies are explicitly taken
into account for the two other approaches. For the
MDP learners, they are modeled in every state which
results in a slowly decreasing learning curve; it takes
longer before all state-action pairs are explored. The
context-specific approach has a quicker decreasing
learning curve since only joint actions are considered
for these coordinated states. As we we see from Fig. 5,
both methods result in an almost identical policy.

Table 1 shows the average capture times for the dif-
ferent approaches for the last 10 test runs from Fig. 5
and a manual implementation in which both predators
first minimize the distance to the prey and then wait
till both predators are located next to the prey. When
both predators are located next to the prey, social con-
ventions based on the relative positioning are used to
decide which of the two predators moves to the prey
position.

The context-specific learning approach converges to a
slightly higher capture time than that of the MDP
Learners. An explanation for this small difference is
the fact that not all necessary coordination require-
ments are added as value rules. In our construction of
value rules we assume that the agents do not have to
coordinate when they are located far away from each

Method avg. time | #Q-values
Independent learners 16.86 97,020
Manual policy 14.43 -
Sparse Cooperative 13.14 32,190
MDP Learners 12.87 242,550

Table 1. Average capture time after learning (averaged
over 5,000 episodes) and the number of state-action pairs
for the different methods.

other, but already coordinating in these states might
have a positive influence on the final result. These con-
straints could be added as extra value rules, but then
the learning time would increase with the increased
state-action space. Clearly, a trade-off exists between
the expressiveness of the model and the learning time.

8. Discussion and Conclusions

In this paper we discussed a Q-learning approach
for cooperative multiagent systems that is based on
context-specific coordination graphs, and in which
value rules specify the coordination requirements of
the system for a specific context. These rules can be
regarded as a sparse representation of the complete
state-action space, since they are defined over a sub-
set of all state and action variables. The value of each
rule contributes additively to the global Q-value and is
updated based on a Q-learning rule that adds the con-
tribution of all involved agents in the rule. Effectively,
each agent learns to coordinate only with its neigh-
bors in a dynamically changing coordination graph.
Results in the predator-prey domain show that our
method improves the learning time of other multia-
gent Q-learning methods, and performs comparable to
the optimal policy.

Our approach is closely related to the coordinated
reinforcement learning approach of (Guestrin et al.,
2002a). In their approach the global Q-value is also
represented as the sum of local Q-functions, and each
local Q-function assumes a parametric function repre-
sentation. The main difference with our work is that
they update the weights of each local Q-value (of each
agent) based on the difference between the global Q-
values (over all agents) of the current and (discounted)
next state (plus the immediate rewards). In our ap-
proach, the update of the Q-function of an agent is
based only on the rewards and Q-values of its neigh-
boring agents in the graph. This can be advantageous
when subgroups of agents need to separately coordi-
nate their actions. From this perspective, our local
Q-learning updates seem closer in spirit to the local
Sarsa updates of (Russell & Zimdars, 2003).

Another related approach is the work of (Schneider
et al., 1999) in which each agent updates its local Q-
value based on the Q-value of its neighboring nodes.
A weight function f(i,7) determines how much the Q-
value of an agent j contributes to the update of the
Q-value of agent i. Just as in our approach, this func-
tion defines a graph structure of agent dependencies.
However, these dependencies are fixed throughout the
learning process (although they mention the possibil-
ity of a dynamically changing f). Moreover, in their
approach Q-learning involves back-propagating aver-
ages of individual Q-values, whereas in our case Q-
learning involves back-propagating individual compo-
nents of joint Q-values. We applied their distributed
value function approach on our predator-prey prob-
lem with a weighting function that averaged the value
evenly over the two agents. However, the policy did
not converge and oscillated around an average cap-
ture time of 33.25 cycles since the agents also affect
each other in the uncoordinated states. For instance,
an agent ending up in a low-valued state after taking
an exploratory action influences the individual action
taken by the other agent negatively.

There are several directions for future work. In our
current implementation we have assumed that all
agents contribute equally to the rules in which they
are involved (see Eq. (9)). We would like to investigate
the consequence of this choice. Furthermore, we would
like to apply our approach to continuous domains with
more agent dependencies, and investigate methods to
learn the coordination requirements automatically.

Acknowledgments

We would like to thank the three reviewers for their
detailed and constructive comments. This research is
supported by PROGRESS, the embedded systems re-
search program of the Dutch organization for Scien-
tific Research NWO, the Dutch Ministry of Economic
Affairs and the Technology Foundation STW, project
AES 5414.

References

Claus, C., & Boutilier, C. (1998). The dynamics of re-
inforcement learning in cooperative multiagent sys-
tems. Proc. 15th Nation. Conf. on Artificial Intelli-
gence. Madison, WI.

Guestrin, C. (2003). Planning under uncertainty in
complex structured environments. Doctoral dis-
sertation, Computer Science Department, Stanford
University.

Guestrin, C., Lagoudakis, M., & Parr, R. (2002a). Co-

ordinated reinforcement learning. Proc. 19th Int.
Conf. on Machine Learning. Sydney, Australia.

Guestrin, C., Venkataraman, S., & Koller, D. (2002b).
Context-specific multiagent coordination and plan-
ning with factored MDPs. Proc. 8th Nation. Conf.
on Artificial Intelligence. Edmonton, Canada.

Kok, J. R., & Vlassis, N. (2003). The pursuit domain
package (Technical Report TAS-UVA-03-03). In-
formatics Institute, University of Amsterdam, The
Netherlands.

Russell, S., & Zimdars, A. L. (2003). Q-decomposition
for reinforcement learning agents. Proceedings of the
20th International Conference on Machine Learning.
Washington, DC.

Schneider, J., Wong, W.-K., Moore, A., & Riedmiller,
M. (1999). Distributed value functions. Proc. Int.
Conf. on Machine Learning. Bled, Slovenia.

Sen, S., Sekaran, M., & Hale, J. (1994). Learning to
coordinate without sharing information. Proc. 12th
Nation. Conf. on Artificial Intelligence. Seattle, WA.

Shapley, L. (1953). Stochastic games. Proceedings of
the National Academy of Sciences, 39, 1095-1100.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

Tan, M. (1993). Multi-agent reinforcement learning:
Independent vs. cooperative agents. Proc. 10th Int.
Conf. on Machine Learning. Amherst, MA.

Vlassis, N. (2003). A concise introduction to
multiagent systems and distributed Al In-
formatics Institute, University of Amsterdam.
http://www.science.uva.nl/ " vlassis/cimasdai.

Watkins, C., & Dayan, P. (1992). Technical note: Q-
learning. Machine Learning, 8, 279-292.

Weiss, G. (Ed.). (1999). Multiagent systems: a modern
approach to distributed artificial intelligence. MIT
Press.

