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Abstract

Entropy-type measures for the heterogeneity of
clusters have been used for a long time. This
paper studies the entropy-based criterion in clus-
tering categorical data. It first shows that the
entropy-based criterion can be derived in the for-
mal framework of probabilistic clustering models
and establishes the connection between the crite-
rion and the approach based on dissimilarity co-
efficients. An iterative Monte-Carlo procedure is
then presented to search for the partitions mini-
mizing the criterion. Experiments are conducted
to show the effectiveness of the proposed proce-
dure.

1. Introduction

Clustering is the problem of partitioning a finite set of
points in a multi-dimensional space into classes (called
clusters) so that (i) the points belonging to the same class
are similar and (ii) the points belonging to different classes
are dissimilar. Clustering has been extensively studied in
machine learning, databases, and statistics from various
perspectives. Many applications of clustering have been
discussed and many clustering techniques have been devel-
oped.

An important step in designing a clustering technique is
defining a way to measure the quality of partitioning in
terms of the above two objectives. For clustering numer-
ical data, it is natural to think of designing such a measure
based on a geometrical distance. Given such a measure, an
appropriate partition can be computed by optimizing some
quantity (e.g., the sum of the distances of the points to their
cluster centroids). However, if the data vectors contain cat-
egorical variables, geometric approaches are inappropriate
and other strategies must be developed (Bock, 1989).
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The problem of clustering becomes more challenging when
the data is categorical, that is, when there is no inherent
distance measures between data values. This is often the
case in many applications where data is described by a set
of descriptive or binary attributes, many of which are not
numerical. Examples of such include the country of origin
and the color of eyes in demographic data.

Many algorithms have been developed for clustering cate-
gorical data, e.g., (Barbara et al., 2002; Gibson et al., 1998;
Huang, 1998; Ganti et al., 1999; Guha et al., 2000; Gyl-
lenberg et al., 1997). Entropy-type measures for similarity
among objects have been used from early on. In this paper,
we show that the entropy-based clustering criterion can be
formally derived in the framework of probabilistic cluster-
ing models. We also establish the connections between the
entropy-based criterion with the approach based on dissim-
ilarity coefficients. We then develop an efficient Monte-
Carlo procedure to find the optimal partition for minimiz-
ing the entropy-based criterion. Experiments demonstrate
the efficacy and effectiveness of our approach.

The rest of the paper is organized as follows: Section 2 for-
mulates the problem of categorical clustering and sets down
notations, Section 3 introduces the traditional entropy-
based clustering criterion, Section 4 shows the equivalence
between the entropy-based criterion with the classifica-
tion likelihood, Section 5 establishes the relations between
entropy-based criterion with dissimilarity coefficients, Sec-
tion 6 presents the iterative Monte-Carlo based procedure
for minimizing the entropy criterion, Section 7 gives our
experimental results, and finally Section 8 concludes.

2. Definitions and Notations

Let D be a dataset of n points d1, d2, . . . , dn, where for
each i, 1 ≤ i ≤ n, di is a vector of p categorical attributes.
For each i, 1 ≤ i ≤ n, and for each j, 1 ≤ j ≤ p, let dij

be the j-th component of di. We want to find a partition of
D into classes C1, C2, . . . , CK such that the points within
each class are similar to each other.



Each categorical variable can be decomposed into a col-
lection of indicator variables. Suppose that every cate-
gorical variable in D has at most m possible values. For
each variable v, let the m values naturally correspond to
the numbers from 1 to m and let v(1), · · · , v(m) be the bi-
nary variables such that for each k, 1 ≤ k ≤ m, v(k) = 1
if and only if the v takes the k-th value. Then the data
set can be expressed as a collection of m n × r matrices
(dk

ij), 1 ≤ i ≤ n, 1 ≤ j ≤ r, 1 ≤ k ≤ m, where dk
ij = 1

if the j-th attribute of the i-th data point is in the k-th cat-
egory. Hence the following discussion is based on binary
variables.

We set down some notations. Suppose that a set of n
r-dimensional binary data vectors, X , represented as an
n × r matrix, (xij), is partitioned into K classes C =
(C1, . . . , CK) and we want the points within each class
are similar to each other. We view C as a partition of
the indices {1, . . . , n}. So, for all i, 1 ≤ i ≤ n, and
k, 1 ≤ k ≤ K, we write i ∈ Ck to mean that the i-
th vector belongs to the k-th class. Let N = nr. For
each k, 1 ≤ k ≤ K, let nk = ‖Ck‖, Nk = nkr, and
for each j, 1 ≤ j ≤ r, let Nj,k,1 =

∑

i∈Ck
xij and

Nj,k,0 = nk − Nj,k,1. Also, for each j, 1 ≤ j ≤ r, let
Nj,1 =

∑n
i=1 xij and Nj,0 = n − Nj,1.

Consider a discrete random vector Y = (y1, y2, · · · , yr)
with r independent components, where for each i, 1 ≤ i ≤
r, yi takes a value from a finite set Vi.

H(Y ) = −
∑

p(Y ) log p(Y ) =

r
∑

i=1

H(yi)

= −

r
∑

i=1

∑

t∈Vi

p(yi = t) log p(yi = t)

We will use Ĥ for the estimated entropy of the partition.

3. Classical Entropy Criterion

3.1. Entropy Criterion

The classical clustering criterion (Bock, 1989; Celeux &
Govaert, 1991) searches for a partition C that maximizes
the following quantity O(C):

O(C) =

K
∑

k=1

r
∑

j=1

1
∑

t=0

Nj,k,t

N
log

NNj,k,t

NkNj,t

=

K
∑

k=1

r
∑

j=1

1
∑

t=0

Nj,k,t

N

(

log
Nj,k,t

nk

− log
Nj,t

n

)

=
1

N

K
∑

k=1

r
∑

j=1

1
∑

t=0

nk

Nj,k,t

nk

log
Nj,k,t

nk

−

r
∑

j=1

1
∑

t=0

Nj,t

N
log

Nj,t

n

=
1

r

(

Ĥ(X) −
1

n

K
∑

k=1

nkĤ(Ck)

)

. (1)

Observe that 1
n

∑K
k=1 nkĤ(Ck) is the entropy measure of

the partition, i.e., the weighted sum of each cluster’s en-
tropy. This leads to the following criterion: Given a dataset,
fix Ĥ(X), then maximizing O(C) is equivalent to mini-
mizing the expected entropy of the partition:

1

n

K
∑

k=1

nkĤ(Ck) (2)

3.2. Kullback–Leibler Measure

The above criterion can be interpreted as the Kullback–
Leibler measure (K–L measure) as follows: Suppose the
observed dataset is generated by a number of classes. We
first model the unconditional probability density function
and then seek a number of partitions whose combination
yields the density function (Roberts et al., 2000). The K–L
measure then tries to measure the difference between the
unconditional density and the density under partition.

Let p(y) and q(y) be two distributions. Then

KL(p(y) ‖ q(y)) =

∫

p(y) log

(

p(y)

q(y)

)

dy.

For each j, 1 ≤ j ≤ r, and for each t ∈
{0, 1}, let p(yj = t) =

Nj,t

n
and q(yj = t) =

pk(yj = t) =
Nj,k,t

nk
. Then KL(p(y) ‖ q(y)) ≈

∑

p(y) log(p(y)) −
∑

p(y) log(q(y)). The latter quan-
tity is equal to

∑r
j=1

∑

t∈{0,1} p(yj = t) log(p(yj =

t)) −
∑r

j=1

∑

t∈{0,1} p(yj = t) log(q(yj = t)), and this

is equal to −Ĥ(X) −
∑r

j=1

∑

t∈{0,1}
Nj,t

n
log(

Nj,k,t

nk
) =

−Ĥ(X) + nk

n
Ĥ(Ck). Thus, O(C) is equal to

1

r

(

Ĥ(X) − KĤ(X) +

K
∑

k=1

KL(p(y) ‖ pk(y))

)

. (3)

So, minimizing the K–L measure is equivalent to mini-
mizing the expected entropy of partition over the observed
data.

4. Entropy and Mixture Models

In this section, we show that the entropy-based clustering
criterion can be formally derived using a likelihood princi-
ple based on Bernoulli mixture models. In mixture models,
the observed data are thought of as coming from a number



of different latent classes. In our case, the observed data,
X = {xi}

n
i=1, are r-dimensional 0/1-vectors. So, we can

assume that the data are samples from {0, 1}r and are sub-
ject to a mixture of multivariate Bernoulli distributions:

p(xi) =

K
∑

k=1

πkp(xt|k)

=

K
∑

k=1

πk

r
∏

j=1

(

a
(j)
k

)xi,j
(

1 − a
(j)
k

)(1−xi,j)

.

Here for each i, 1 ≤ i ≤ n, xi = (xi,1, xi,2, · · · , xi,r)
and for each k, 1 ≤ k ≤ K, πk is the probability that
the k-th latent class is selected (so

∑K
k=1 πk = 1). Also,

for each j, 1 ≤ j ≤ r, and for each k, 1 ≤ k ≤ K,
a
(j)
k is the probability that the j-th attribute is exhibited in

the k-th latent class. For each k, 1 ≤ k ≤ K, let ak =
(a

(1)
k , . . . , a

(r)
k ). Let a = {ak}1≤k≤K . We use p(xi|a) for

the above p(xi) to signify that it is under the latent variables
a.

4.1. Maximum Likelihood and Classification
Likelihood

Recall that the Maximum Likelihood Principle states that
the best model is the one that has the highest likelihood
of generating the observed data. In the mixture model ap-
proach, since the data points are independent and identi-
cally distributed, the maximum likelihood of obtaining the
entire sample X can be expressed as:

L(a) = log p(X|a) = log

n
∏

i=1

p(xt|a)

=
n
∑

i=1

log





K
∑

k=1

πk

r
∏

j=1

(

a
(j)
k

)xi,j
(

1 − a
(j)
k

)(1−xtj)



 .

We introduce auxiliary vectors, ui = (ui,k), 1 ≤ i ≤ n,
1 ≤ k ≤ K, where ui,k = 1 if and only if xi comes
from the cluster Ck. These vectors are additional unknown
parameters. The classification likelihood (Symons, 1981),
denoted by CL(a,u), is equal to:

n
∑

i=1

K
∑

k=1

ui,k log p(xi|ak)

=

n
∑

i=1

K
∑

k=1

ui,k log

r
∏

j=1

(

a
(j)
k

)xi,j
(

1 − a
(j)
k

)(1−xi,j)

(4)

It is easy to see that

CL(a,u) = L(a) − LP (a,u),

where

LP (a,u) = −

n
∑

i=1

K
∑

k=1

ui,k log

(

πkp(xi|ak)
∑K

`=1 π`p(xi|a`)

)

.

Note that LP (a,u) ≥ 0 and the quantity can be thought of
as corresponding to the logarithm of the probability of the
partition induced by u. Hence, the classification likelihood
is the standard maximum likelihood penalized by a term
measuring the quality of the partition.

4.2. Maximizing the Likelihood

From Equation 4, CL(a,u) is equal to:

K
∑

k=1

log
∏

i∈Ck

r
∏

j=1

(

a
(j)
k

)xi,j
(

1 − a
(j)
k

)(1−xi,j)

=

K
∑

k=1

r
∑

j=1

(

Nj,k,1 log a
(j)
k + Nj,k,0 log(1 − a

(j)
k )
)

.

If u is fixed maximization of CL(a,u) over a reduces
to simultaneous maximization of CLk,j(a

(j)
k ) for all k,

1 ≤ k ≤ K, and j, 1 ≤ j ≤ r, where CLk,j(a
(j)
k ) =

Nj,k,1 log a
(j)
k +Nj,k,0 log(1−a

(j)
k ). For all k, 1 ≤ k ≤ K,

and j, 1 ≤ j ≤ r, 0 < a
(j)
k < 1 and Nj,k,0 + Nj,k,1 = nk.

So, ∂CLk,j

∂a
(j)

k

= 0 ⇐⇒
Nj,k,1

a
(j)

k

−
Nj,k,0

1−a
(j)

k

= 0 ⇐⇒

(Nj,k,1 + Nj,k,0)a
(j)
k = Nj,k,1 ⇐⇒ a

(j)
k =

Nj,k,1

nk
.

By replacing a
(j)
k by Nj,k,1

nk
for all k, 1 ≤ k ≤ K and j,

1 ≤ j ≤ r, we have

CL(a,u) = −

K
∑

k=1

nkĤ(Ck). (5)

Once a dataset is given, the quantities n, p, and Ĥ(X) are
fixed. So, the criterion CL(a,u) is equivalent to O(C) in
Equation 1, since both aim at minimizing the expected en-
tropy over the partition. Note that ak can be viewed as the
“center” for the cluster Ck. The equivalence between the
information theoretical criterion and the maximum likeli-
hood criterion suggests a way to assess the number of clus-
ters when using the entropy criterion: to look at the likeli-
hood ratio based on latent classes. In addition, each cluster
Ck is characterized by the “center” ak.

5. Entropy and Dissimilarity Coefficients

In this section, we show the relations between the en-
tropy criterion and the dissimilarity coefficients. A pop-
ular partition-based criterion (within-cluster) for clustering
is to minimize the summation of dissimilarities inside the
cluster. The within-cluster criterion can be described as
minimizing

D(C) =
K
∑

k=1

1

nk

∑

i,i′∈Ck

δ(xi, xi′), (6)



where δ(xi, xi′) is the distance measure between xi and
xi′ . In general, the distance function can be defined us-
ing Lp norm for some integer p > 0. For binary clus-
tering, however, the dissimilarity coefficients are popular
measures of the distances.

5.1. Dissimilarity Coefficients

Given two data points, w and w′, there are four fundamen-
tal quantities that can be used to define similarity between
the two (Baulieu, 1997): a = ‖{j | wj = w′

j = 1}‖, b =
‖{j | wj = 1 ∧ w′

j = 0}‖, c = ‖{j | wj = 0 ∧ w′
j = 1}‖,

and d = ‖{j | wj = w′
j = 0}‖, where 1 ≤ j ≤ r. It has

been shown in (Baulieu, 1997) that the presence/absence
based dissimilarity measure can be generally 1 written as
D(a, b, c, d) = b+c

αa+b+c+βd
, where α > 0 and β ≥ 0.

Dissimilarity measures can be transformed into a similarity
function by simple transformations such as adding 1 and
inverting, dividing by 2 and subtracting from 1, etc. (Jar-
dine & Sibson, 1971). If the joint absence of the attribute is
ignored, i.e., β is set to 0, then the binary dissimilarity mea-
sure can be generally written as D(a, b, c, d) = b+c

αa+b+c
,

where α > 0. Table 1 shows several common dissimilarity
coefficients and the corresponding similarity coefficients.

Name Similarity Dissimilarity Metric
Simple Matching Coeff.

a+d
a+b+c+d

b+c
a+b+c+d

Y
Jaccard’s Coeff.

a
a+b+c

b+c
a+b+c

Y
Dice’s Coeff.

2a
2a+b+c

b+c
2a+b+c

N
Russel&Rao’s Coeff.

a
a+b+c+d

b+c+d
a+b+c+d

Y

Rogers&Tanimoto’s Coeff.
1
2 (a+d)

1
2 (a+d)+b+c

b+c
1
2 (a+d)+b+c

Y

Sokal&Sneath’s Coeff. I
1
2 a

1
2 a+b+c

b+c
1
2 a+b+c

Y

Sokal&Sneath’s Coeff. II
2(a+d)

2(a+d)+b+c
b+c

2(a+d)+b+c
N

Table 1. Binary dissimilarity and similarity coefficients. The
“Metric” column indicates whether the given dissimilarity coeffi-
cient is metric or not. A ’Y’ stands for ’YES’ while an ’N’ stands
for ’No’.

5.2. Global Equivalence on Coefficients

In cluster applications, the rankings based on a dissimilar-
ity coefficient is often of more interest than the actual value
of the dissimilarity coefficient. The following results from
(Baulieu, 1997) establish the equivalence among dissimi-
larity coefficients.

Definition 1 Two dissimilarity coefficients, D and
D′, are said to be globally order equivalent if for
all (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ (Z+)4, it holds
that D(a2, b2, c2, d2) < D(a1, b1, c1, d1) ⇐⇒

1Basically, the presence/absence based dissimilarity measure
satisfies a set of axioms such as non-negative, range in [0, 1], ra-
tionality whose numerator and denominator are linear and sym-
metric, etc. (Baulieu, 1997).

D′(a2, b2, c2, d2) < D′(a1, b1, c1, d1).

Proposition 1 Let D = b+c
αa+b+c+βd

and D′ =
b+c

α′a+b+c+β′d
such that αβ′ = α′β. Then, D and D′ are

globally order equivalent.

Corollary 1 For all α, α′ > 0, D = b+c
αa+b+c

and D′ =
b+c

α′a+b+c
are globally order equivalent.

In other words, if the paired absences are to be ignored in
the calculation of dissimilarity values, then there is only
one single dissimilarity coefficient modulo the global order
equivalence: b+c

a+b+c
. With the equivalence results, our fol-

lowing discussion is then based on the single dissimilarity
coefficient.

5.3. Entropy and Dissimilarity Coefficients

In the coefficient b+c
a+b+c

, b+c is the number of mismatches
between binary vectors. If we assume that there is no joint
absence in the dataset, i.e., for every single pairwise com-
parison d = 0, then a + b + c is constant because the vec-
tors are drawn from the same set and they all have the same
number of attributes.

It is easy to see that the following property holds:

Remark 1 Let u, v, and w be binary vectors. If δ(u, v) <
δ(u,w), then H({u, v}) < H({u,w}).

Now examine the within-cluster criterion in Equation 6.
We have:

D(C) =

K
∑

k=1

1

nk

∑

i,i′∈Ck

δ(xi, xi′)

=

K
∑

k=1

1

nk

∑

i,i′∈Ck

1

r

r
∑

j=1

|xi,j − xi′,j |

=
1

r

K
∑

k=1

1

nk

r
∑

j=1

nkρ
(j)
k nk(1 − ρ

(j)
k )

=
1

r

K
∑

k=1

r
∑

j=1

nkρ
(j)
k (1 − ρ

(j)
k ).

Here for each k, 1 ≤ k ≤ K, and for each j, 1 ≤ j ≤ r,
ρ
(j)
k is the probability that the j-th attribute is 1 in Ck.

Havrda and Charvat (Havrda & Charvat, 1967) proposed a
generalized entropy of degree s, s > 0 and s 6= 1, for a
discrete probability distribution Q = (q1, q2, . . . , qn):

Hs(Q) = (2(1−s) − 1)−1

(

n
∑

i=1

qs
i − 1

)

.

It holds that



lims→1 Hs(Q) = −
∑n

i=1 qi log qi and
H2(Q) = −2

(
∑n

i=1 q2
i − 1

)

.

If we use the entropy with s = 2, then

1

n

K
∑

k=1

nkĤ(Ck)

= −
1

2n

K
∑

k=1

r
∑

j=1

nk

(

(ρ
(j)
k )2 + (1 − ρ

(j)
k )2 − 1

)

=
1

n

K
∑

k=1

r
∑

j=1

nkρ
(j)
k (1 − ρ

(j)
k )

=
r

n
D(C).

Thus, we have established the connections between the
entropy-criterion and the dissimilarity coefficients. Fig-
ure 1 shows the relations between the entropy-based cri-
terion and other criteria. The relations of the entropy-based
criterion to Minimum Description Length (MDL) / Mini-
mum Message Length (MML) and to rate distortion theory
can be found in (Cover & Thomas, 1991; Baxter & Oliver,
1994).

Entropy Criterion

Classification Likelihood

Maximum Likelihood

KL Measure

Mutual Information between

Penality of Partition

Unconditional Density and Partitional Density
Bernoulli M

ixture

MDL/MML

Code Length

Rate Distoration

A
ve

ra
ge

 D
is

to
ra

tio
n

Disimilarity Coefficients

Generalized Entropy

Order Relationships

Figure 1. A summary of relations among various clustering cri-
teria.

We note here that Wallace (Wallace, 1989) proposed a two-
step procedure for numerical hierarchical cluster analysis
by minimizing Gaussian entropy, defined based on the log-
arithm of the covariance matrix determinant. The rela-
tionships between minimization of Gaussian entropy and
other objective functions such as minimum variance, maxi-
mum likelihood and information radius were also discussed
in (Wallace, 1989).

6. Entropy-based Clustering

In the previous sections, we showed the connections be-
tween the entropy-based criterion and other criteria. The
relations seem to indicate that many clustering problems

can be reduced to the problem of minimizing the entropy
criterion. In this section, we develop an efficient procedure
to find the optimal partition for minimizing the entropy-
based criterion.

6.1. The Entropy-Based Criterion

The entropy-based criterion (eq. 2) can be written as

H(C) =
1

n

K
∑

k=1

nkĤ(Ck)

= −
1

n

K
∑

k=1

r
∑

j=1

1
∑

t=0

nk

Nj,k,t

nk

log
Nj,k,t

nk

.

Proposition 2 Ĥ(X) ≥ H(C) = 1
n

∑K
k=1 nkĤ(Ck)

Proof We have

K
∑

k=1

r
∑

j=1

1
∑

t=0

Nj,k,t log
Nj,k,t

nk

=
r
∑

j=1

1
∑

t=0

K
∑

k=1

Nj,k,t log
Nj,k,t

nk

≥
r
∑

j=1

1
∑

t=0

(

K
∑

k=1

Nj,k,t

)

log

∑K
k=1 Nj,k,t
∑K

k=1 nk

=
r
∑

j=1

1
∑

t=0

Nj,t log
Nj,t

n
.

The inequality follows from the log sum inequality
in (Cover & Thomas, 1991). Note that

Ĥ(X) = −

r
∑

j=1

1
∑

t=0

Nj,t

n
log

Nj,t

n
and

H(C) = −
1

n

K
∑

k=1

r
∑

j=1

1
∑

t=0

Nj,k,t log
Nj,k,t

nk

.

Hence, we have Ĥ(X) ≥ H(C).

Proposition 2 shows that any clustering process decreases
the entropy. The goal of clustering is to find a partition C
such that the increase in the entropy, i.e., Ĥ(X) − H(C),
is maximized (as in eq. 1). In other words, we should min-
imize H(C).

Proposition 3 H(C) is maximized when all data points
are in the same cluster.

Proof If all the data points are put in one cluster, then
H(C) = Ĥ(X). Then, by Proposition 2, H(C) is max-
imized.



For each j, 1 ≤ j ≤ r, and each k, 1 ≤ k ≤ K, let θ(j|k)
be the probability that the j-th component of a vector is 1
given that it belongs to Ck. Then H(C) is equal to:

−
1

n

K
∑

k=1

r
∑

j=1

nk(θ(j|k) log θ(j|k)

+ (1 − θ(j|k)) log(1 − θ(j|k))

= −

K
∑

k=1

r
∑

j=1

θ(j, k) log θ(j|k)

+ (θ(k) − θ(j, k)) log(1 − θ(j|k))

= −
K
∑

k=1

r
∑

j=1

∑

i∈Ck

θ(j, xi) log θ(j|k)

+

(

1

n
− θ(j, xi)

)

log(1 − θ(j|k)),

where θ(k) = nk

n
, θ(j, k) = θ(k)θ(j|k), θ(j, k) =

∑

i∈Ck
p(j, xi). Generally p(j, xi) =

Nj,1

n2 . The above
shows that H(C) is convex when varying the clustering
since p(j, xi) is an invariant in the process, so H(C)
evolves like a negative logarithm which is a convex func-
tion. The convexity of H(C) allows the optimization pro-
cedures to reach global minimum.

6.2. Optimization Procedure

We use a Monte-Carlo method to perform the optimization.
Initially, all the points are placed in the same cluster. By
Proposition 3, this initialization attains the maximal crite-
rion. We then perform an iterative Monte-Carlo process to
find the optimal partition. The clustering procedure is the
following Algorithm 1.

Algorithm 1 uses a Monte-Carlo method to perform op-
timization (Rubinstein, 1981). Randomly picking a data
point x and putting it into another cluster is a trial step of
modifying the parameters θ(j|k). We then check whether
the entropy criterion is decreased, and if so, we accept
the update and continue; otherwise, no modification will
be made. This is repeated until there are no changes in
the cluster assignment. The convergence property of the
Monte-Carlo optimization is shown in (Rubinstein, 1981).

7. Experiments

7.1. Performance Measures
There are many ways to measure how clustering algorithms
perform. One is the confusion matrix. Entry (o, i) of the
confusion matrix is the number of data points assigned to
output class o and generated from input class i. The input
map I is the map of the data points to the input classes.
So, the information of the input map can be measured by
the entropy H(I). The goal of clustering is to find an out-

Algorithm 1 clustering procedure

Input: (data points: X , # of classes: k)
Output: cluster assignment;
begin
1. Initialization:
1.1 Put all data points into one cluster
1.2 Compute Initial Criterion H0

2. Iteration:
Repeat until no more changes in cluster assignment

2.1 Randomly pick a point x from a cluster A
2.2 Randomly pick another cluster B
2.3 Put x into B
2.4 Compute the new entropy H
2.5 if H ≥ H0

2.5.1 Put x back into A
2.5.2 H = H0

2.6 end
2.7 H0 = H
2.8 Goto Step 2.1

end
3. Return the cluster assignment
end

Input
Output 1 2 3 4 5 6 7

A 9 0 1 0 0 0 0
B 0 20 0 0 0 0 0
C 32 0 0 0 1 2 2
D 0 0 0 0 0 0 0
E 0 0 4 0 2 0 8
F 0 0 0 13 0 0 0
G 0 0 0 0 0 6 0

Table 2. Confusion matrix of the zoo data.

put map O that recovers the information. Thus, the condi-
tional entropy H(I|O) is interpreted as the information of
the input map given the output map O, i.e., the proportion
of information not recovered by the clustering algorithm.
Therefore, the recovery rate of a clustering algorithm, de-
fined as 1 − H(I|O)/H(I) = MI(I,O)/H(I)2, can also
be used as a performance measure for clustering. The pu-
rity (Zhao & Karypis, 2001), which measures the extent to
which each cluster contains data points primarily from a
single class, is also a good measure. The purity of a clus-
tering solution is obtained as a weighted sum of the purity
of individual clusters, given by

Purity =

K
∑

k=1

nk

n
P (Ck),

2MI(I, O) is the mutual information between I and O.



where P (Ck) = 1
nk

maxj(n
(j)
k ), nj

k is the number of points
of the i-th input class that were assigned to the j-th clus-
ter3. A high purity value implies that the clusters are “pure”
subsets of the input classes. In general, the larger the values
of purity, the better the clustering solution is.

7.2. Zoo Dataset

We evaluate the performance of the algorithm on the zoo
database available at the UC Irvine Machine Learning
Repository. The database contains 100 animals, each of
which has fifteen boolean attributes and one categorical at-
tribute4. We translate the numeric attribute, “legs,” into
six features, which correspond to 0, 2, 4, 5, 6, and 8 legs,
respectively. Table 2 shows the confusion matrix of this ex-
periment and Table 3 shows comparison against K-means.

Entropy-based K-means
Recovery Rate 0.8001 0.7374

purity 0.9000 0.8400

Table 3. Results Comparison on Zoo dataset.
At each step of the iteration process, one data point exper-
iments a new cluster. A Monte-Carlo method accepts any
better solutions instead of performing systematic searches.
Figure 2 shows the entropy descent of our Monte-Carlo
method.
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Figure 2. Entropy Descent of the Monte-Carlo Method.

7.3. Clustering Document Datasets

We also evaluate our entropy-based clustering algorithm on
document datasets. In our experiments, documents are rep-
resented using binary vector-space model where each docu-
ment is a binary vector in the term space and each element
of the vector indicates the presence of the corresponding
term. Our main goal is to find out how well this method
would perform on document corpus. Therefore, we evalu-
ate the method on standard labeled corpus widely used in

3P (Ck) is also called the individual cluster purity.
4The original data set has 101 data points but one animal,

“frog,” appears twice. So we eliminated one of them. We also
eliminated two attributes, “animal name” and “type.”

information retrieval literature to evaluate supervised text
categorization algorithms. In this way, we view the labels
of the dataset as the objective knowledge on the structure
of the datasets and then use the purity as the performance
measure.

7.3.1. DOCUMENT DATASETS

For our experiments we use a variety of datasets, most
of which are frequently used in the information retrieval
research. The range of the number of classes is from
four to ten, and the range of the number of documents
is from 476 to 8280, which seem varied enough to ob-
tain good insights on the algorithm. Table 4 summarizes
the characteristics of the datasets. CSTR: This is the
dataset of the abstracts of technical reports published in
the Department of Computer Science at the University of
Rochester between 1991 and 2002. The TRs are available
at http://www.cs.rochester.edu/trs. It has been used in (Li
et al., 2003) for text categorization. The dataset contained
476 abstracts, which were divided into four research ar-
eas: Natural Language Processing(NLP), Robotics/Vision,
Systems, and Theory. WebKB: The WebKB dataset con-
tains webpages gathered from university computer science
departments. There are about 8280 documents and they
are divided into seven categories: student, faculty, staff,
course, project, department and other. The raw text is
about 27MB. Among these seven categories, student, fac-
ulty, course and project are four most populous entity-
representing categories. The associated subset is typically
called WebKB4. In this paper, we perform experiments on
both seven-category and four-category datasets. Reuters:
The Reuters-21578 Text Categorization collection contains
documents collected from the Reuters newswire in 1987.
It is a standard text categorization benchmark and contains
135 categories. In our experiments, we use a subset of the
data collection which include the ten most frequent cate-
gories.

7.3.2. RESULTS ON DOCUMENT DATASETS

To pre-process the datasets, we remove the stop words use
a standard stop list and perform stemming using a porter
stemmer, all HTML tags are skipped and all header fields
except subject and organization of the posted article are ig-
nored. In all our experiments, we first select the top 200
words by mutual information with class labels. The fea-
ture selection is done with the rainbow package (McCal-
lum, 1996). In our experiments, we compare the perfor-
mance of our entropy-based method with the popular vec-
tor space variant of the partitioning algorithms provided in
the CLUTO package (Zhao & Karypis, 2001). CLUTO
package is built on a sophisticated multi-level graph par-
titioning engine and offers many different criteria that be
used to drive both partitional and agglomerative cluster-



ing algorithms. Figure 3 shows the comparison and the
entropy-based method is effective on all four datasets.

Datasets # documents # class
CSTR 476 4

WebKB4 4199 4
WebKB 8,280 7
Reuters 2,900 10

Table 4. Document DataSets Descriptions.

Figure 3. Performance Comparison on Document Datasets.

8. Conclusions
In this paper, we study the entropy-based criterion for cate-
gorical data clustering and illustrate its relations with other
criteria. An efficient, iterative Monte-Carlo procedure for
optimization that takes advantage of the convexity of the
criterion is presented. The experimental results indicate the
effectiveness of the proposed method.
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